
THOR LiftApp Life Cycle Friday, September 20, 2024

THOR-NX-T/E LiftApp

Testing, Life Cycle & Cyber Security

Document Information:

Item Info/Comment

Project Name: Testing, Life Cycle & Security of the THOR LiftApp software

Document Owner: Dipl.-Ing.(FH) Roy Schneider

File Name: LiftApp_LifeCycle_Security.odt

Document History:

Name Version Changes Date

Roy Schneider 1.2.3 Updated Cloud-Diagram 29.05.24

Roy Schneider 1.2.4 Added disambiguation. 03.05.24

Roy Schneider 1.2.5 Added 'Engineer on Site' note. 17.05.24

Roy Schneider 1.2.6 MQTT-Fuzzing and Compiler Optimizations. 06.06.24

Roy Schneider 1.2.7 Responsibilities for White-/Gray-/Black Test. 12.06.24

Roy Schneider 1.2.8 Note about Safety Circuit (Door Bridging). 03.07.24

Roy Schneider 1.2.9 Added incident report template. 17.09.24

Roy Schneider 1.3.0 Added Software Backup/Update chapter. 20.09.24

This document uses the 'OpenSans' font, licensed under
the Apache License 2.0.

Icons and symbols have been properly licensed
from Axialis IconWorkshop™.

Release Date: 09/20/2024

LiftApp Cyber Security Fri, September 20, 2024

Table of Contents
1 Normative references...5
2 Company..6
3 Copyright..7
4 Error Reports...7
5 Abstract..8
6 Signs & Symbols..8
7 Purpose and Intended Use..8
8 Safety Information..8
9 General...9

9.1 Introduction..9
9.2 Threat model..9
9.3 Disambiguation..10
9.4 Data minimization...10
9.5 Code Analysis and Automatic Documentation..11

10 Product requirements..12
10.1 FR1 (SL-T2)..13
10.2 FR2 (SL-T2)..14
10.3 FR 3 (SL-T2)...15

Application...15
Safety Chain Sensing...15

10.4 FR 4 (SL-T2)...16
Application...16
Safety Chain Sensing...16

10.5 FR 5 (SL-T1)...17
10.6 FR 6 (SL-T1)...18
10.7 FR 7 (SL-T2)...19

Energy/System Power...19
Safety Chain and Safety Circuit..19
CANBus...19
Web server and Cloud Interface..21
MQTT-Interface..21

11 Development Environment..24
11.1 Local Development Machines..24
11.2 Data Protection on Routers, Switches and other Network Equipment..............25
11.3 Data Protection on involved NAS Systems...25
11.4 Data Protection when generating Software Releases...25
11.5 Data Protection regarding E-Mail and external File-Storage................................25
11.6 Data Protection inside Thor's Lift Cloud Interface..26
11.7 Google's and DeepL's Cloud API solutions...26

Page 2/85

LiftApp Cyber Security Fri, September 20, 2024

11.8 Staying Up-To-Date about Vulnerabilities...26
11.9 Workflow...28

12 Incident/Issue Reporting..30
13 Updating & Maintaining the Manuals...33
14 Versioning..34

14.1 Example..34
14.2 Numbering...35
14.3 Tagging..35

15 Documenting the Software Testing/Fuzzing..36
16 LiftApp Update & Release Notification...37

16.1 Update Documentation..38
16.2 Update & Functional Security..38
16.3 Safely Updating the Firmware...39
16.4 Creating a backup copy of the current software...40
16.5 Updating via SD/USB Mass Storage..41
16.6 Updating via the Cloud Service..43

17 Password Security...46
18 Lift Parameter Change Log..48
19 Network connection...49

19.1 General...49
19.2 Fuzzing the Interfaces...49
19.3 Open Network Ports...50

20 USB/Micro-SD Security...51
21 DEBUG Interface...51
22 Micro USB Connector...52
23 Safety Chain Sensing..52
24 NeXt® Cloud Security...53
25 MQTT Interface Security...54

25.1 MQTT Settings and Connection Status...55
25.2 MQTT access to the Lift...55

26 Testing a Release Candidate..56
26.1 Standard Test Procedure..56
26.2 Extended Test List (New Functions)...59
26.3 White, Gray and Black Box Tests..60

27 Checksums & Software Version..61
28 Decommissioning...62
29 Coding rules...63

29.1 Abstract...63
29.2 Basic and General Directives..63
29.3 Rules and Definitions..65

Functions/Methods and Attributes...65

Page 3/85

LiftApp Cyber Security Fri, September 20, 2024

Deriving classes...67
Jumps..68
Type definitions including enumerations and bit fields...68
Switch/Case/Default constructions...69
Long if/else constructs..69
Source and Header files...70
Classic C-String operations...71

30 Code Analysis Tools..72
31 Risky Compiler Optimizations...73
32 SHA implementation..74

Page 4/85

LiftApp Cyber Security Normative references Fri, September 20, 2024

1 Normative references
/CiA 417-1..4 version 2 CANopen application profile for lift control systems,
 Part 4: Detailed application object specification

/DIN EN 81-20:2020 Safety rules for the construction and installation of lifts

/DIN EN 60664/ Insulation coordination for equipment within
low-voltage systems

/DIN EN 60950/ Information technology equipment and safety

/IEC 62443-4-1/2/ Security for industrial automation and control
systems

/ISO 8102-20/ Electrical requirements for lifts, escalators and moving
walks — Part 20: Cybersecurity

Page 5/85

LiftApp Cyber Security Company Fri, September 20, 2024

2 Company

Thor Engineering GmbH

Koblenzer Straße 96

53177 Bonn

Germany

E-Mail: hq@thor.engineering

https://www.thor.engineering/

Headquarters: Koblenzer Straße 96, 53177 Bonn

Amtsgericht Bonn, HRB 21892

USt-IdNr.: DE304473775

Member of the NeXt group

https://next-group.org/

Page 6/85

https://next-group.org/
https://www.thor.engineering/
mailto:hq@thor.engineering

LiftApp Cyber Security Copyright Fri, September 20, 2024

3 Copyright
Copyright © 2017-24 by THOR Engineering GmbH, Bonn

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
document and THOR Engineering GmbH was aware of a trademark claim, the
designations have been emphasized printed.

All rights reserved.

WARNING: The information described in this document may contain errors or bugs
and may not function as described. All information is subject to enhancement or
upgrade for any reason including to fix bugs, add features or change performance. As
with all upgrades full compatibility, although a goal, cannot be guaranteed and is in
fact unlikely.

DISCLAIMER: This information is provided to you "as is" with out warranty of any kind,
either express or implied. The entire risk as to the use of the information is assumed
by you. THOR Engineering GmbH specifically does not make any representations or
endorsements, regarding the use of, the results of, or performance of the information
including but not limited to its appropriateness, accuracy, reliability, currentness, or
otherwise. In no event will THOR Engineering GmbH be liable for direct, indirect,
incidental, or consequential damages resulting from any defect in this information
even if it has been advised of the possibility of such damages. Some laws do not allow
the exclusion or limitation of implied warranties or liabilities for incidental or
consequential damages, so the above limitation or exclusion may not apply.

4 Error Reports
In a complex technical manual, errors are often found after publication. When errors
in this manual are found, they will be corrected in a subsequent version. Updates will
be published via the company's homepage.

Bug reports can be sent to us by e-mail. Submitted reports must be clear, complete
and concise. Reports must include an e-mail address and enough information, so that
the bug can quickly be verified from the report. So please describe the bug and the
steps that produce it.

For more details see Incident/Issue Reporting on page 30.

Page 7/85

LiftApp Cyber Security Abstract Fri, September 20, 2024

5 Abstract
The THOR lift controllers are exciting high-performance microcomputers with superb
user interface and multitasking capabilities. Their technologically advanced hardware
is designed around a modern Embedded Linux® system and sophisticated hardware
design. Thor's unique system software provides technicians with unparalleled power,
flexibility and convenience in designing state-of-the-art lift applications.

6 Signs & Symbols
The used icons have been licensed from Axialis IconWorkshop™.

➢ In this document the term 'lift' is used rather than 'elevator.

➢ The term 'LiftApp' is used to refer to the lift controller application software.

➢ The term 'OS' is used to refer to the Embedded Linux® operating system.

➢ The term 'THOR NX-T/E' or simply 'THOR' refers to the unit made from the
reference hardware and reference software package.

7 Purpose and Intended Use
The THOR NX-T/E lift controller is specially made for lift/elevator applications only. To
ensure safe operation, the device shall only be operated in accordance with the
instructions given.

8 Safety Information
Before commissioning, assembling and/or maintaining this unit, read the safety
instructions carefully and pay extra attention to any warning label attached to the
cabinet or units itself.

➢ Make sure that the warning labels are not hidden or damaged.

➢ Replace any missing or damaged warning label.

This device may only be installed and operated in conjunction with this
documentation. Commissioning, installing and operation of the unit shall only be
done by qualified employees having an electrical engineering qualification.

Qualified employees in the sense of the safety instructions in this documentation are
further persons, who have the authorization to put devices, systems and electrical
circuits, according to the standards of safety engineering, into operation.

Page 8/85

LiftApp Cyber Security General Fri, September 20, 2024

9 General
Software does make at least half of the function of lift controller products. It has been
grown as important as the hardware, itself, were it is running on. Therefore testing,
documentation and maintaining of the software has grown as important as never
before in mankind's technological history.

ISO 8102-20 describes the implementation of IEC 62443 - Industrial
Communication Network Security for elevators.

9.1 Introduction

Because of the software being so capable and complex, testing and maintaining has
become a major part of the lift controller's life cycle. Providing updates in regard to
normatives, bug fixes and security related improvements are part of the customer
service, provided after selling the unit. This also applies to the documentation, that
needs permanently to be kept up-to-date.

In the same manner as hardware changes are documented in the form of
schematics, software changes need to be documented as well as the software is
very much defining the product's behaviour and function.

9.2 Threat model

The threat model and the risk analysis shall start with defining the attacker types and
their intention. An attacker could be a local teenager who simply sees hacking a lift as
an exciting task. But criminals who want to gain access to buildings/rooms by
attacking a local lift are also conceivable. However, both of these types of attackers
require local access, the damage is limited to the facility itself and this is more likely to
be considered vandalism (cybervandalism). These attackers put themselves at high
personal risk and it is more the responsibility of local security authorities to track
them down. A real threat, which should be considered are “crawlers”, which are
automatic scripts, that are scanning around for open network ports to step in and
create damage. When we talk about Cybersecurity, it is more widespread attacks on
the transport infrastructure, that should be considered. In other words, attacks that
are carried out remotely by script kiddies or hackers for personal pride, blackmailing
or to weaken a facility by putting the lifts out of operation.

Attacks via the remote maintenance connections, i.e. the connections between the
lifts and a cloud, are the most suitable for this, as they allow the attacker to be at a
safe distance from the event and enable him/her to operate covertly. The relationship

Page 9/85

LiftApp Cyber Security Threat model Fri, September 20, 2024

between effort and achievable damage makes enough sense for the attacker to carry
out an attack in this way.

If we talk about the ISO 8102-20 for lifts, we are in need to look at the domain
'Essential', that requires SL(T)2, which defines:

“Protection against intentional misuse by simple means with few resources,
general skills and low motivation.”

9.3 Disambiguation

Spoofing - Pretending to be something or someone other than yourself. The desired
property would be Authenticity.

Tampering - Modifying something like parameters in the system, network, memory,
or elsewhere. The desired property would be the Integrity of a system.

Repudiation - Claiming that you didn't do something or were not responsible. The
desired property would be not to be reputability for something, like having changed a
parameter, that cause an incident. The lift controller actually has a Parameter Change
Log because of that.

Information disclosure - Someone obtaining information they are not authorized to
access. The desired property here would simply be Confidentiality.

Denial of service - Exhausting resources needed to provide a service or rendering a
system unusable. The desired property would be Availability of the system.

Elevation of privilege - Allowing someone to do something they are not authorized to
do. The desired property would be Authorization.

If you add the first letters of the terms together, you get the word STRIDE. STRIDE is
the name of a model developed by Loren Kohnfelder and Praerit Garg at Microsoft for
identifying IT security threats. It provides a reminder of security threats in the six
categories, that we have named.

9.4 Data minimization

In general, we at Thor Engineering only store the minimum of required data necessary
for planning, development, testing, construction and e-mail connectivity. Data that
have no direct relation to the processes at Thor Engineering is not stored non-volatile.
Personal Data stored may include Name, Address, Titles, E-Mail and phone numbers
as well as the kind of business relation and position inside the company. This also
includes bug reports, related to software or hardware issues, that may also include
the contact person as well as the technical data recorded to reproduce the issue.

Page 10/85

LiftApp Cyber Security Code Analysis and Automatic Documentation Fri, September 20, 2024

9.5 Code Analysis and Automatic Documentation

The developers are supported by code analysis tools, like the ones provided by
Eclipse's CDT-Code-Analysis and the excellent CPPCheck project, to prevent mistakes in
the process of writing the code. An example would be using wrong format specifiers in
string formatting code or using unattended implicit casts or leaving local variables,
non-initialized or the lack of checking of parameters handed over to functions and
methods. Each release of the LiftApp (even release numbers) was previously checked
by CPPCheck in a 13-hour analysis run.

All functions or methods have a comment head, that confirms to DoxyGen's syntax
standard. That makes it possible for other developers to get an overview about the
classes or structures, using that tool.

The automatic checking and documentation is just a helper and not a substitute for
manual checking and documentation. But we have learned that issues remarked by
the documentation tool in the first place, like naming differences in declarations, can
help tracking down issues early.

For more information see the chapter 'Code Analysis Tools' on page 72.

Page 11/85

LiftApp Cyber Security Product requirements Fri, September 20, 2024

10 Product requirements
The IEC-62443 defines four main regions.

Region/Range Description Examples

Essential Essential functions that are
vital for the availability
of the system

Call entry, position,
direction detection, door
movements

Safety SIL related safety functions Door safety bridging

Alarm Emergency Functions Lift Phone calls, Emergency
Light

Other Other functions Infotainment, Music

Each functional region has a minimum security level (SL-T), that shall be achieved.
IEC-62443 defines basically five levels.

Requirement Alarm Essential Safety

FR 1 - Identification and authentication 2 2 3

FR 2 - Use control 1 2 2

FR 3 - System integrity 1 2 2

FR 4 - Data confidentiality 1 2 2

FR 5 - Restricted data flow 1 1 1

FR 6 - Timely response to events 1 1 1

FR 7 - Resource availability 1 2 2

The lift controller itself is in the essential functional region. The built-in safety circuit is
an electromechanical circuit that is a component of its own and integrated as a
separate assembly. Its task of checking the synchronization of the zone channels is
carried out without any software. The control unit monitors the function after every
trip, but this is captures by the essential range, as is the contactor monitoring. Only
functional safety and no SIL level is defined for both.

For the lift controller in question, the SL-T would equal to { 2-2-2-2-1-1-2 }.

Page 12/85

LiftApp Cyber Security FR1 (SL-T2) Fri, September 20, 2024

10.1 FR1 (SL-T2)

Identification and authentication

If browsing through the menus you find a yellow or red overlay icon on menu items.
These indicate that you will have to enter a 'Service' (yellow) or 'Setup' (red) password
in order to alter their value/setting.

If the user is inactive, the password must be entered again.

Menu item requiring 'Service' password privilege.

Menu item requiring 'Setup' password privilege.

The manual clearly states, that the installing company in agreement with the owner,
have to protect the important settings in the Lift Controller by setting a proper 'Setup'-
Password. You can do that via the user interface, following 'System Menu → Security'.
The password should be at least 6 characters long.

Please refer to the chapter 'Password Security' on page 46 in this document for more
details.

The system does not store passwords in its non-volatile memory. Instead only the
salted SHA is stored in order to make password validation possible.

Page 13/85

Figure 1: Menu item requiring setup password privilege

LiftApp Cyber Security FR2 (SL-T2) Fri, September 20, 2024

10.2 FR2 (SL-T2)

Use control

The usage of Passwords is logged in the 'Logbook' (Event Logger). Any parameter
changes are recorded in the 'Parameter Change Log (Parameter Logger). The Parameter
Change Log is a logging file system, storing all changes that had been made to the
lift's parameters over time. It stores the last 256 parameter changes locally and
non-volatile on the controller board.

The graphical visualization can be found following 'System Menu' 'Security' 'Lift → →
Parameter Change Log'.

The log file stores:

• What parameter had been changed (name/help text).

• At which date/time the parameter had been changed.

• How the parameter had been changed.

◦ locally via the user interface

◦ via the bus system

◦ remotely (if possible) via the cloud solution

• What kind of privilege had been required to change the parameter
(setup/service/none) privilege.

• The old and the new value(s) of the parameter, to put the parameter change in
a context.

Please refer to the chapter 'Lift Parameter Change Log' on page 48 in this document
for more details.

Page 14/85

Figure 2: Lift Parameter Change Log found under System Menu Security→

LiftApp Cyber Security FR 3 (SL-T2) Fri, September 20, 2024

10.3 FR 3 (SL-T2)

System integrity

Application

At every application start the checksum (CRC32) of the binary is checked to make sure,
it has not changed unattended. The file system used also uses checksums to detect
defective sectors and not to pass on data that is not valid. When installing an update
of the application, a SHA1 of the update binary is send independently from the binary
itself to make it possible for the technician to check, if the file has been tampered or
manipulated. To make that process easy, the SHA is calculated by the running
application and presented to the technician, that now is in charge to check it against
the one he got via mail. Additionally to that the notified body is regularly checking the
checksum to make sure it has not been altered, since the last check.

Note: The checksum of the update binary and the checksum later shown at the screen
for the notified body may vary as the binary is 'stamped' when being installed, making
it impossible to run it on another hardware.

Please refer to the chapter 'Checksums & Software Version' on page 61 in this
document for more details.

Safety Chain Sensing

The system integrity also touches
sensing the safety chain (ISO
8102-20 A.3.9.3). The safety chain
is sensed in hardware by means
of a certified sensing circuitry, that
fulfill the EN81-20/50 normatives.
The circuitry has been validated
and certified by the Lift Instituut
as a notified body. The examination covered a check whether compliance with the Lift
Directive 2014/33/EU is met based on the harmonized product standards EN 81-20
and EN 81-50.

What is important during the test is that the query circuit is non-reactive and therefore
cannot influence the state of the safety circuit itself (backwards). Please refer to the
chapter 'Safety Chain Sensing' on page 52 in this document for more details.

Page 15/85

LiftApp Cyber Security FR 4 (SL-T2) Fri, September 20, 2024

10.4 FR 4 (SL-T2)

Data confidentiality

Application

The lift controller is storing events, related to the lifts operation in order to make fault
tracking easier and increase the overall availability of the lift installation. Together with
recorded statistical data about trips, direction changes, contactor operations, re-
levelling and door movements, the wear of components can be evaluated by the
maintenance company. Additionally parameter changes are recorded by the lift
controller. Personal data, like 'who' has changed a parameter or 'who' has used the lift
is not recorded by any means. This also applies to the optional mass storage logging,
that can optionally be used for detailed fault tracking.

The connected Cloud solution is featuring encryption (TLS) and certificate based
handshakes in order to make sure, that no data are leaked into the wrong hands.

But anyway it is a requirement that the users of the product or the cloud solution
makes sure, that passwords or credentials are not leaked out. This also applies to
employees who leave the company.

If the slightest suspect of a leakage exists, it is in their responsibility to act and
change passwords and credentials.

We recommend that there is a designated person in the maintenance company
who centrally manages passwords and credentials. It is also important that only
the lowest level of access is passed on to employees and that not everyone has
the role of an administrator!

The system does not store SETUP/SERVICE passwords in its non-volatile memory.
Instead only the salted SHA is stored in order to make SETUP/SERVICE password
validation possible.

Please refer to the chapter 'NeXt® Cloud Security' on page 53 as well as chapter
'Password Security' on page 46 in this document for more details.

Safety Chain Sensing

The data confidentiality also touches sensing the safety chain (ISO 8102-20 A.3.9.3).
The safety chain is sensed in hardware by means of a certified sensing circuitry, that
fulfills the EN81-20/50 normatives. The state of the safety chain is not received/read
by means of any bus system. It is directly sensed by the lift controller own hardware
by means of on-board components. Messages that reflect the safety chain signals are
not accepted being received via the CANopen system, even that CANopen CiA-417

Page 16/85

LiftApp Cyber Security FR 4 (SL-T2) Fri, September 20, 2024

defines such messages. The lift controller does reflect the current electrical state of
the safety chain back via bus messages for diagnostic purposes. Please refer to the
chapter 'Safety Chain Sensing' on page 52 in this document for more details.

10.5 FR 5 (SL-T1)

Restricted data flow

The lift controller exchanges control and status words with the peripherals via the
CANopen bus system, according to the CiA-417 Profile for Lifts. Process data flow with
the cloud solutions is done accordingly to the User Agreements of the Cloud solution.

It is important that the user of the Cloud solution, usually the Maintenance
Company, has agreed that kind of remote service with the owner of the lift, as
the owner of the lift is not only owning the installation but also the data, that it
is producing.

Please refer for the Cloud to the chapter 'NeXt® Cloud Security' on page 53 as well as
chapter 'Password Security' on page 46 in this document for more details.

Please refer for the CANbus to the chapter 'CANBus' on page 19 in this document for
more details.

Page 17/85

LiftApp Cyber Security FR 6 (SL-T1) Fri, September 20, 2024

10.6 FR 6 (SL-T1)

Timely response to events

Organizational Side

In the event of an incident, it is important that we have a structured procedure in
place to respond in a timely manner and, if necessary, inform our customers
promptly. To do this, follow the chapter Incident/Issue Reporting on page 30.
Feedback from the field is important for the qualitative further development of the
product.

Technical Side

On the technical side, the lift controller itself has a build-in hardware watchdog that
ensures that the required program parts are processed correctly. If this is not the case,
the lift is performing a full-stop and all outputs are switched off and the system
restarts safely. A system restart is recorded in the system's event memory.

The hardware watchdog can be tested via the Tests menu.

Additionally, there are time-based warnings/faults that are generated when:

• The door zone signal is reset belated, when the car is leaving the floor.

• The Advance Door Opening operation takes an unusually long time.

• Door opening and door closing are unusual slow or even fail.

• The time behavior of the drive is unusual, see Start Control, Run Timer
Supervision, Deceleration Control, Re-levelling and Pawl Device Supervision.

• The cabin movement fails while driving for no apparent reason, for example
due to a failure of the position encoder belt.

• The status words of the position sensor, the drive and the car IO-panel are
monitored for their timing, when being transmitted via the bus system.

CANopen CiA-417 is featuring the producer-consumer heartbeat model, with which it
is constantly checked that the modules (nodes), like the Drive Unit, the Positioning
Unit and the Car Weighing Device do not 'log off' from the bus. The nodes do monitor
the heartbeat of the controller and the controller monitors the heartbeat of them. If
IO-units disappear from the bus, their inputs and outputs are set to off.

Page 18/85

LiftApp Cyber Security FR 7 (SL-T2) Fri, September 20, 2024

10.7 FR 7 (SL-T2)

Resource availability

Energy/System Power

The system is directly monitoring the mains voltage (230V AC or 120 V AC), that the
power supply is using to generate the 24V DC bus. That means that the controller
knows that the 24V will drop, before it actually does. Additionally the supply voltage of
the internal circuitry is monitored by a dedicated power controller (PMIC), that
generate internal voltages from the 24V DC.

The voltage of the Car Light supply is also directly monitored via a 230V AC / 120V AC
input. Additionally the emergency light battery charger has usually a fault output, that
is connected to the lift controller as well.

Safety Chain and Safety Circuit

The safety chain is not transmitted via the bus system. It is always connected
classically in hardware, connected directly onto the certified safety board. We do NOT
support encoder system or other peripherals, that transmit the safety chain over the
bus system. Those inputs can not be reprogrammed.

Please refer to the chapter 'Safety Chain Sensing' on page 52 for more details.

The built-in safety circuit for door bridging is an electromechanical circuit that is a
component of its own and integrated as a separate assembly. Its task of checking the
synchronization of the two zone channels is carried out without any software. The
control unit monitors the function after every trip by means of a feedback contact.

CA NBus

The CANopen bus status words of peripherals, like the position encoder or the drive
unit are parameterized to be send on a cyclic base, making it possible to detect
failures or delayed transmission properly. Additionally timeouts for control words
(commands) have been useful implemented and tested. When a bus error or bus off
situation would happen, the lift controller would come to a full stop and enter a
secure state. The doors are kept closed outside the door zone.

The CANbus is featuring identifiers (COB-IDs) for the messages, that distinguishes and
determines the priority (importance) in case of concurrence of messages in the
network. The manufactures of CANopen components must take part in the regularly
Plug-Fest at CiA HQ in Nuremberg in order to ensure the interoperability of the

Page 19/85

LiftApp Cyber Security FR 7 (SL-T2) Fri, September 20, 2024

components and that they apply to the bus standard. Otherwise they are not allowed
to feature the CANopen logo for their products. We recommend only to use
components, that proudly and rightly bear the CANopen Lift logo.

The lift controller itself is installed regarding the EN81-20/50 in a special and key-
locked room, that shall prevent unattended access to the hardware and equipment,
usually reffed to as the 'Machine Room'. The CANbus interface and the corresponding
wiring are in those closed and safe spaces, were even every screw, used for car panels
need to be vandal-proof. Anyhow the second CAN, so CAN2, that is used for the
landing calls might be more exposed as it ends up in the hall call panels at the
landings. Therefore all bus components, being related to positioning, driving, load
measuring and car I/O are connected to CAN1 only.

The CAN1 and CAN2 interfaces are galvanically and logically separated. The CAN1
interface goes from the controller cabinet straight through the travelling cable,
passing the hoistway into the car, were the panels are hold with vandal-proof
elements.

No status words from inverter/brake, position encoder, PSU or doors are accepted on
CAN2. Control words cannot be sent to these modules either. There is no transparent
routing of any messages between CAN1 and CAN2.

Page 20/85

Lift Controller

Inverter/Drive

Load Measuring

Positioning/Encoder

CAN1

CAN2
Hall Call

Hall Call

Hall Call

Hall Call

Hall Call

Protected space

LiftApp Cyber Security FR 7 (SL-T2) Fri, September 20, 2024

Nevertheless, the availability of a lift system can be negatively influenced by opening
external landing call panels (LOB), for example by short-circuiting the call
acknowledgment lamp to ground.

Web server and Cloud Interface

While the build-in web server is only meant to be used temporarily for Repair in a local
network, the Cloud solution is intended to be used remotely by means of a n internet
connection. Both interfaces might be attacked. For the build-in web server, a local
attack by some script kiddy might be a scenario and for the Cloud interface automatic
crawlers are a real threat.

MQTT-Interface

MQTT stands for “Message Queuing Telemetry Transport”. It is an open messaging
protocol. It is usually used for M2M (machine-to-machine communication), such as the
Internet of Things. The interface is switched off by factory defaults and can only be
activated directly on the device (i.e. not remotely). Typically, this interface is used with
our lift controller for AVG's (Automated Guided Vehicles) in factories. We recommend
using the encrypted TLS Web Socket MQTT mode. Only in secured networks, such as
in factories or hospital environments, where the building automation network is
separate and inaccessible from outside, can a lower connection mode be selected. In
principle, it is not possible to change parameters or access elements of the lift via this
logical interface. However, it is possible to give calls and send door open/close button
requests. This can affect the availability of the system.

Fuzz-Testing the Cloud JSON-REST-API and Web Interface

To make sure, that our interfaces are rock-solid and hardened enough to fight back,
attacks, executed by means of malformed HTTP-headers, malformed HTTP-bodies,
data floating via the Web-Socket or simply fuzzing the JSON-REST-API with non-sense,
in order to break the system and render the lift non-operational, we have
implemented a set of Fuzzing and Penetration tests of our own, using POSTMAN as
the working horse. POSTMAN is a wide spread tool, used for performing Fuzzing tests
to network interfaces.

https://www.postman.com/product/what-is-postman/

To make sure, the Fuzz, used for testing the interface input does contain all thinkable
data noise, we update our 'List of Naughty Strings' from the “minimaxir/big-list-of-

Page 21/85

https://www.postman.com/product/what-is-postman/

LiftApp Cyber Security FR 7 (SL-T2) Fri, September 20, 2024

naughty-strings” repository and use a simple shell script to convert those to a .csv file
and use that as input for POSTMAN.

It is especially important to use those 'Naughty Strings' for input properties of the
JSON-REST-API and web interface to make sure, that the parsing code at the LiftApp
end will handle all unexpected data and does not fail or do unattended or unwanted
procedures.

The POSTMAN tool is also used to check if it is possible to create issues by simply
spamming the exposed network interfaces with data noise and do port scans.

The POSTMAN tool is also used to document these tests as it keeps a history of test
execution.

Fuzz Testing the MQTT Interface of the LiftApp

For fuzz testing of the MQTT interface, we have developed our own test method that
uses randomly generated, faulty MQTT messages (also with incorrect length
specifications) to check whether the MQTT parser can catch all conceivable or random
error scenarios.

The test is executed before a version is released is documented in the Release
document.

Protocol (shortened)

CAppMQTTClient::Do_Development_Fuzz_Testing() - 15.05.2024-13:21:35 Start Fuzzing the MQTT message parser,
using seed value of 4876620.

MQTT Fuzz 10 43 98 3D 3D 3D 85 2B 2B 2B CD 9D 9D 9D AF 2C 2C 2C 7E 51 51

CAppMQTTClient::Handle_Message_RX() Remaining length indication is larger than bytes received.

MQTT Fuzz 4A 5E 34 7F 7F 7F 1A DE DE DE 4E 35 35

CAppMQTTClient::Handle_Message_RX() Remaining length indication is larger than bytes received.

MQTT Fuzz 0C C9 19 CF CF CF AC 4E 4E 4E E1 C9 C9 C9

CAppMQTTClient::Handle_Message_RX() Remaining length indication is larger than bytes received.

MQTT Fuzz F1 94 31 D0 D0 D0 CC 23 23 23 4F 80 80 80 28 2A 2A 2A 98 26 26 26 D4 A9 A9 A9 36 97 97 97 51 1B 1B
1B 1B 1D 1D 1D F2 36 36 36 E1 56 56 56 CD 43

CAppMQTTClient::Handle_Message_RX() Remaining length indication is larger than bytes received.

MQTT Fuzz CF 14 68 BA BA BA 0F 61 61 61 7F 50 50 50 8E 37 37 37 CE 5D 5D 5D DC A0 A0 A0 A9 E3 E3 E3 D4 14 14
14 0B 74 74 74 E3 09 09 09 66 0A 0A 0A 18 E9

CAppMQTTClient::Handle_Message_RX() Unknown message type.

… <100 more>

Page 22/85

LiftApp Cyber Security FR 7 (SL-T2) Fri, September 20, 2024

Port Scanning

To check for open ports, we use our own port scanner utility, which we have also
published as part of our LiftApp Toolbox for everyone to use for free.

 By factory default our lifts do not have any port open!▶

Page 23/85

LiftApp Cyber Security Development Environment Fri, September 20, 2024

11 Development Environment

11.1 Local Development Machines

To minimize the risk of an attack or intrusion, the development of the lift application is
done within a virtual machine, that is exclusively used to write, compile and link/build
the application. This virtual machine is not used for web browsing, e-mails or any
other online activity, other than fetching updates, setting the clock and getting safe
time stamps for digital signing. Linux® based systems are used as development
environments for the lift application.

The virtual machine player, that runs the Linux®
used for bit-baking is digitally signed, making
sure that this is the correct released binary of the
manufacturer.

The source code is stored in a repository. The
password and private key used to check-in and
check-out and for administration, is known to the
developer only with a single back-up copy on a
physical USB-stick, hold by the CEO of the
company. The key files are not part of the source
repository for obvious reasons.

The outer host machine is used to communicate
with the outside world. This host might be a
Windows® machine. Here the developer will do
browsing and e-mail or instant messaging communication. These host machine are
protected by anti-virus software, monitoring the file and network communication.

All local PC's, laptop and workstations at Thor Engineering are equipped with an up-to-
date virus scanner application, that locally checks the file and network I/O. It is also
responsible for scanning incoming e-mails for possible threads, based on embedded
scripts and hostile executable attachments.

All local PC's, laptop and workstations at Thor Engineering are equipped with a local
firewall in order to minimize the risk of an intrusion from within the network.

For the Linux® and Windows® machines, available security related updates are
fetched automatically on daily basis.

The development machines are turned off in the evening and over the weekends by
means of being physically cut of from the mains. The feature 'Power on over Network' is
also disabled in the BIOS.

Page 24/85

LiftApp Cyber SecurityData Protection on Routers, Switches and other Network Equipment Fri,
September 20, 2024

11.2 Data Protection on Routers, Switches and other Network
Equipment

The firmware of the network router and manageable switches are updated as soon as
new firmware is available. The external administration (WAN) console of such devices
is deactivated.

• We do not use anonymous file shares or non-encrypted FTP via our networks.

• All wireless networks are secured by an 16 digit long key using WPA2.

• Guests use the 'Guest' wireless account only, that grand no access to our local
computer systems or network file storage, that may contain confidential data.

 ▸ This also applies to 'Guest Developers' attending meetings at Thor Engineering!

11.3 Data Protection on involved NAS Systems

The firmware of the NAS-systems are updated as soon as new firmware is available.
The external administration (WAN) console is deactivated. Accessing the NAS is
secured by username and a password that complies with Thor's password policy.

11.4 Data Protection when generating Software Releases

Software that is released by Thor Engineering is in the process of compiling/linking
checked for malware. Software released is either digitally signed (Authenticode Certifi-
cate) or (Embedded Software) provided with an extra SHA1 hash, to check/ensure after-
wards, that the software binary is till intact and authentic. Our partner for Authenti-
code Certificates is the Symantec Corporation. We prefer to develop in Virtual Linux®
Environments, that are only used for editing source code, compiling and linking. In
those virtual machines, there is no e-mail communication and no web browser usage.

11.5 Data Protection regarding E-Mail and external File-Storage

All e-mail accounts used at Thor Engineering are accessed only featuring TLS
encryption. Our trusted e-mail provider (One.com) has for its part, to ensure
compliance with the GDPR.

https://help.one.com/hc/en-us/articles/360000253649-How-does-One-com-comply-
with-the-GDPR-

Our provider for External File Storage is Dropbox Business which has indicated to
fulfill the GDPR on its own side being certified by ISO 27018 the internationally

Page 25/85

https://help.one.com/hc/en-us/articles/360000253649-How-does-One-com-comply-with-the-GDPR-
https://help.one.com/hc/en-us/articles/360000253649-How-does-One-com-comply-with-the-GDPR-

LiftApp Cyber SecurityData Protection regarding E-Mail and external File-Storage Fri,
September 20, 2024

standard for practices in cloud privacy and data protection.

https://www.dropbox.com/en_GB/security/gdpr

11.6 Data Protection inside Thor's Lift Cloud Interface

Thor's Cloud interface is used to connect lift controllers with a cloud, mainly used for
predictive maintenance. Personal data is not the main focus of this solution. Anyhow
the lifts are owned by operating companies that have indirect personal data involved,
like the name of the owner or maintenance technician. To make sure, there is no
unattended access to the lift via the cloud solution, that could leave to the lift being
attacked or data stolen, Thor's cloud solution features TLS encryption and
Certificate based server authentication by default & by design without any
compromises. The cloud provider, which in turn enables endpoint access, must
ensure that access data does not fall into the wrong hands by complying with
standards such as ISO 27017 “Information Security in Cloud Computing” and ISO
27018 “Data Protection for Cloud Services”.

11.7 Google's and DeepL's Cloud API solutions

Currently Thor Engineering is featuring the 'Translation API' of the named cloud
services, processing no personal data at all. These service are currently only used by
Thor's development host machines and not by the lift controller application.
When using these services only the strings to be translated, the resulting string and
our API key for accounting is used.

11.8 Staying Up-To-Date about Vulnerabilities

We do a hybrid approach here. We monitor the dedicated industry news and vendor
sources for our applications, that we are using on our systems. Additionally we
regularly browse the BitDefender Lab News and the DigiCert News as we use their
products (Virus Scanner and Code Signing) in house on our machines.

https://www.bitdefender.com/blog/labs

https://www.digicert.com/news

Additionally we regularly communicate with the web developers of MASORA AG
(Switzerland) and Code Ink (Netherlands), that implement their versions of the Next®
Cloud API. By doing so we make sure, that we share the news, knowledge and tech
related gossip.

Page 26/85

https://www.digicert.com/news
https://www.bitdefender.com/blog/labs
https://www.dropbox.com/en_GB/security/gdpr

LiftApp Cyber Security Staying Up-To-Date about Vulnerabilities Fri, September 20, 2024

National Vulnerability Database (NVD)

We query the NVD, which is the National Vulnerability Database (NVD). It is the U.S.
government's repository of standards-based vulnerability management data. They use
a CVSS metric to measure the security issues and make it more transparent for us,
how we shall react.

https://nvd.nist.gov/

To make that more efficient, we requested an API key at the NVD, to use their REST API
in order to get Linux® and Windows® related security news via REST-API requests,
that are send directly via the Browser.

Example to fetch Linux based NVD records for the first December week 2023 via the
browser:

https://services.nvd.nist.gov/rest/json/cves/2.0/?noRejected&pubStartDate=2023-12-
01T00:00:00.000&pubEndDate=2023-12-08T00:00:00.000&keywordSearch=Linux

The result JSON-based result has then to be checked for applying to our systems.

To simply the process and make it a Click-Once feature, we have created an utility, that
is built into our LiftApp Toolbox:

For the Linux® and Windows® machines, available updates are fetched automatically
on daily basis via the dedicated update daemon or service.

Page 27/85

https://services.nvd.nist.gov/rest/json/cves/2.0/?noRejected&pubStartDate=2023-12-01T00:00:00.000&pubEndDate=2023-12-08T00:00:00.000&keywordSearch=Linux
https://services.nvd.nist.gov/rest/json/cves/2.0/?noRejected&pubStartDate=2023-12-01T00:00:00.000&pubEndDate=2023-12-08T00:00:00.000&keywordSearch=Linux
https://nvd.nist.gov/

LiftApp Cyber Security Workflow Fri, September 20, 2024

11.9 Workflow

In order to make it clear for the team to see what the current tasks are, what the
status of each task is and to ensure that a task can only be moved to the final 'Release'
state, when it has passed the required states before, like TESTED AND REVIEWED, the
THOR Team is using a KAN Board model. The work flow can be simplified like so:

The status RELEASED can only be reached, when the task has
passed the TESTED, DOCUMENTATION and the REVIEWED
state before. The following RACI diagram shows, who in that
work flow is responsible for what.

Page 28/85

Customer Contact
(START)

Fetching Details
(CREATE)

Checking/Validating
(TO DO)

Creating Test Case
(IMPLEMENTATION)

Fixing Issue
(IMPLEMENTATION)

Testing Solution
(TESTING / REVIEW)

Update Documentation
(REVIEW)

Notifying Customer
(RELEASE)

R

I R

I R

R I

R I

I R

I R C

A R

La
rs

 G
us

ta
fs

so
n

R
o

y
S

ch
ne

id
er

T
h

om
as

 R
eu

l

R – Responsible
A – Accountable
C – Consulted
I – Informed

LiftApp Cyber Security Workflow Fri, September 20, 2024

The THOR team uses a KAN board to map the tasks to be completed and to track
which current task or issue is at which stage of development or documentation.

That makes sure that software changes are not published, before they had been
finalized.

Kanban is a method in which the existing process is improved in small steps rather
than in big leaps. By making small changes, the risk of errors is reduced for each
release. The combination of the KAN board, in which each task is stored with its
current status and associated data and documents, with a Gantt chart that shows the
timeline with which the team works, provides a good overview and planning options.

This ensures that tasks do not collide and customers can be informed early, if there
are delays, for example due to developers becoming ill.

Page 29/85

Figure 3: Jira Workflow - KAN Board

Figure 4: Jira Workflow - Gantt Diagram

LiftApp Cyber Security Incident/Issue Reporting Fri, September 20, 2024

12 Incident/Issue Reporting
In the case of an incident, it is vital that we have a structured procedure of reacting.
Bug/error/security/issue/incident reports can be sent to us by e-mail, directly to:

hq@thor.engineering

Submitted reports must be clear, complete and concise. Reports must include an
name, Lift-/Controller Identification Number, e-mail address and enough information,
so that the bug can quickly be verified from the report. So, please describe the issue
and the steps that produce it as complete as possible.

The information that reaches us via phone or usually e-mail is then filled into an
Incident Report. An incident report is a file that documents any event that may or may
not have caused a functional or security issues of a product. It is used to capture what
has happened and usually the steps required to reproduce the problem, security
breaches and misconducts at the installation site. Our Incident Report template file on
the company server, looks like this (2024-09-04):
THOR Engineering Incident Report
================================

Purpose

An incident report is a file that documents any event that may or may not have caused a functional
or security issues of a product. It is used to capture what has happened and usually the steps
required to reproduce the problem, security breaches and misconducts at the installation site. This
also helps the management implement new policies to determine the efficacy of these changes for
safety and quality.

Topic: /* Give the Incident a Headline! */
Date: dd.mm.yyyy
Changed: --.--.----

General information:

Introduction – /* The first part of the incident report covers the who, what, when, and where
 of the incident. */
-

Body – /* Talk about the incident from start to finish, ensuring details are laid out
 in chronological order to avoid confusion. Include the technician details required to
 reproduce the issue, if possible. That will speed-up the process of fixing. */
-

Setting or environment - /* Please attach the parameter printout of the controller to the report. */
-

Affected Installation
-

Issues caused by the Incident
-

Witnesses/Reporters
-

Quick Fix / Temporary / Short-Term Solution at the installation site
-

Signed-off-by: /* Include the full name and signature of the incident report writer for
 accountability and record-keeping. */

Page 30/85

mailto:hq@thor.engineering?subject=Issue%20Report

LiftApp Cyber Security Incident/Issue Reporting Fri, September 20, 2024

This RACI diagram describes the responsibilities for handling incident reports within
the organization.

*) If the issue is security related.

Page 31/85

Customer Contact
(START)

Fetching Details
(CREATE)

Checking/Validating
(TO DO)

Creating Test Case
(IMPLEMENTATION)

Fixing Issue
(IMPLEMENTATION)

Testing Solution
(TESTING / REVIEW)

Update Documentation
(REVIEW)

Notifying Customer
(RELEASE)

I* R

I R

I R

R I

R I

I R

I R C

A R

La
rs

 G
us

ta
fs

so
n

R
o

y
S

ch
ne

id
er

T
h

om
as

 R
eu

lR – Responsible
A – Accountable
C – Consulted
I – Informed

LiftApp Cyber Security Incident/Issue Reporting Fri, September 20, 2024

Page 32/85

Figure 5: Incident Report Flow Chart

LiftApp Cyber Security Updating & Maintaining the Manuals Fri, September 20, 2024

13 Updating & Maintaining the Manuals
There are three most vital manuals for the Lift Controller Software:

• The Software Reference Manual with its round about 600 pages, that covers
every function included in the lift controller. This manual is updated with
every software version released in English and German language. The
other translations, like French or Netherlands are translated and therefore
updated on demand but at least twice a year.

• The Maintenance & Assembly Manual is updated, if the new function or
feature is directly affecting the installation or maintenance of the lift, but at
least twice a year.

• The small Hardware Brochure is only updated if the hardware is updated or if
errors or issue had been found.

Conclusion:

The most vital document is the Software Reference Manual as this is the reference
from which all other manuals and documentation are derived from. It has to be
updated with every new software release and actually it reflects always for which
software release the manual is valid, as shown in this screenshot:

Document History:

Name Version Reason/Comment Date LiftApp

rsc 2.0.2 Fixed MODbus register address. 26.08.21 1.25.14

rsc 2.0.3 Added docking service operation 07.09.21 1.25.18

rsc 2.0.4 Reworked date & time related MODbus registers. 01.10.21 1.26.02

rsc 2.0.4 Added note about finger protector timeout. 11.10.21 1.26.04

rsc 2.0.5 Added new MODbus registers. 20.10.21 1.26.06

rsc 2.0.6 Added hydraulic jack re-synchronization. 26.10.21 1.26.08

rsc 2.0.7 Added 'Load Time Operation' chapter. 08.11.21 1.27.02

rsc 2.0.8 Updated chapters about Em.Power and Stopover. 17.11.21 1.27.04

New software means an updated manual!

Page 33/85

LiftApp Cyber Security Versioning Fri, September 20, 2024

14 Versioning
In general all versions released to customers do have a manually created entry in the
document 'LiftApp_Version_History.pdf'. The customer can by using the document
always check which functions, options and features had been added, altered or fixed.

An example entry can be found here. The entry shall be created in a form and
wording, that can be understood by the technician of the end customer. It shall
include the version number, the date and which functions had been added, improved
and/or bug fixed. The Secure Hash of the release is not part of that document. The
hash is send with the release notification to the customer directly. It is recommend to
use the same icons as in the user interface, when referring to the functions in
question, making it visually easier for the customer to get the context of the entry.

The entry shall highlight possible safety issues or risks.

14.1 Example

V1.20.14 (03-2020)
New features/functions

• Added basic support for the upcoming smart power supply units. This will be
for sure improved in the future as we want to have statistical data and such.
Currently the units are recognized, turned operational and a simple status page
is available. More will follow...

Improvements

• When using car call code input via the buttons in the panel in the cabin, the
disabled call, that requires a code input, is now flashing, as long as the code
input is active and waiting for the numbers to be entered.

Bug fixes

• Interlocked door operation fixed, if used together with car call code input and
locked door open button option.

Page 34/85

LiftApp Cyber Security Numbering Fri, September 20, 2024

14.2 Numbering

If new functions had been added, the minor version number will be incremented,
making a V1.22.02 out of a V1.21.16 for example. On any kind of improvement or bug
fix, the release number (last two digits) will be incremented. Those digits will always be
incremented, once a version had been released. Odd release numbers do always
indicate a version 'In Making'. An even release number indicates a version, that is
meant to be released to the customer. Once the version had been tested here and by
our test partners, the extension '_stable' will be added. Such a version is then ready to
be shipped to the customers.

The file name will then look like this:

liftapp_01_26_04_stable

14.3 Tagging

Once a version has been build and released for testing a tag shall be created via the
version control system (Git) in order to be able to restore a release later on again. As
also the Software Reference Manual is part of the same repository, the manual
recreated would then match the version being tagged.

Page 35/85

Figure 6: Revision control system

LiftApp Cyber Security Documenting the Software Testing/Fuzzing Fri, September 20, 2024

15 Documenting the Software Testing/Fuzzing
In order to document that all applicable safety-related processes required by the
standard have been completed before product release and that the necessary records
to complete the individual processes are available, we proceed as follows.

When we prepare a new version for the release, we check-in the last testings protocols
into the repository, after having tagged the GIT repository, when the firmware is finally
released.

We do that in the form of a document, like shown in
this example.

A document 'LiftApp_Release_Version_x_yy_zz.pdf ' that
contains what has been changed in the software, since
the last release and the results of our testings
procedures, like the Fuzzing and the Port Scanner
Testing but also the testing we did to Password Security
and Lift related functions. Each test contains 'Who' and
'When' the testing in question has been done.

That document can later be reviewed in the case of an
incident in order to check, were a process needs to be
improved or has been missed.

Page 36/85

(START)

(CREATE)

(TESTING)

(REVIEW)

(RELEASE)

R I

R I

R R

R A

A R I

La
rs

 G
u

st
af

ss
on

R
oy

 S
ch

ne
id

er

T
ho

m
as

 R
eu

lR – responsible
A - accountable
C – consulted
I – informed

LiftApp Cyber Security LiftApp Update & Release Notification Fri, September 20, 2024

16 LiftApp Update & Release Notification
The customer is always notified about every release of the LiftApp via e-mail.

This includes mainly our OEM-partners, that build controller cabinets, sold to their
end-customers. This might also include Engineering or Planning offices or end-
customers, that applied for being notified of any new software release. This includes
also our development partners in the Lift Industry, like the drive, door and encoder
manufacturers for example.

These release notes contain the Versioning Entry plus the Secure hash, that the
downloadable application shall have.

Always note, that the end-customer shall check the SHA when doing the update,
ensuring that the software being installed had not been tampered since it had been
released. This SHA gives you additionally security over the automated CRC32
validation process.

An update is generally only possible, if the lift has been turned to inspection, emer-
gency electrical or emergency stop operation mode. The Setup-Password () has to
be entered correctly and the automatic validation process has to be successfully
passed. Nevertheless manually checking the SHA is recommended. We would like to
refer to the float chart on page 45 as well.

If the update is not downloaded from a local USB/SD mass storage but directly from
the cloud, we force the technician to manually enter the last 8 digits of the hash,
before the hash is displayed on the screen, to ensure, that he/she has read the
e-mail beforehand.

The update can be downloaded manually from an USB mass storage device, a micro
SD card or a cloud connection. A PUSH of an update to the controller is not planned
and is classified by us as a safety risk, as we are of the opinion that after an update
the technician always is in need to check the functional safety of the system, as well as
the correct functioning of elements with which the passengers interact directly, such
as doors and light curtains.

Page 37/85

LiftApp Cyber Security Update Documentation Fri, September 20, 2024

16.1 Update Documentation

In the lift controller the software update is documented, including the time and date,
the old version and the new version, that had been installed. This change log is 256
entries large and can not be erased. But if it has reached 256 entries, a new entry will
then dismiss the oldest entry in the list.

The Lift Parameter Change Log can be found by pressing the 'Favorites' button ()
and then following 'System Menu' 'Security' 'Lift Parameter Change Log'.→ →

16.2 Update & Functional Security

If an update is carried out on an lift controller, it does not affect any SIL-3 relevant
functions, as they are implemented either in hardware or by external components,
like a position supervisor unit.

The software update does not change any operating parameters of the controller.

We suggest to backup the software first and then install the update to ensure that in
the event of an unlikely and unforeseen error, it is possible to return to the previous
program version and thus keep the lift operational, it is recommended to perform a
software backup before updating the software.

Page 38/85

LiftApp Cyber Security Safely Updating the Firmware Fri, September 20, 2024

16.3 Safely Updating the Firmware

The USB and SD-Card mass storage can be used for updating the firmware. It is also
possible to manually download a new firmware from the Cloud connection, instead of
reading the update file from an USB/SD mass storage.

Updating the software can only be done manually and only locally on the device, if...

• The lift has to be turned to inspection, emergency electrical operation or
emergency stop operation.

• To update the firmware, the Setup Code has to be entered locally on site.

• The firmware file is validated by the lift controller. For that purpose the ELF-
token, the build in CRC32 of the file, the vendor-id and the product code are
checked.

• Additionally, the engineer on site must verify the SHA of the file previously
specified in the release notes. The release note has been previously sent to the
technician, typically by e-mail, not in the same way as the file, which is usually
transferred via a file sharing service. The existing lift software calculates the
SHA of the requested file from the USB stick/micro SD card and displays it on
the screen in an easy-to-read manner.

• Only if all requirements are fulfilled, the software can be updated.

• Any update of the software is recorded in the Parameter Change Log as well,
that cannot be erased by the technician.

Page 39/85

LiftApp Cyber Security Creating a backup copy of the current software Fri, September 20,
2024

16.4 Creating a backup copy of the current software

To ensure that in the event of an unlikely and unforeseen error, it is possible to return
to the previous program version and thus keep the lift operational, it is recommended
to perform a software backup before updating the software.

You will find the corresponding parameter
by pressing first 'Home' and then the
hardware button 'Favorites' and then go
to 'System Menu' '→ System' '→ Software
Backup/Update'.

Note that you must enter the SETUP code
and have the inspection operation, the
emergency electrical operation or the
emergency stop activated in order to be able
to perform a backup.

To perform a backup to a mass storage
device (USB/SD), select "Software Backup".
You will now be asked to manually select the
name and storage location, as shown in the
dialog.

To save the file into another folder, double-tap that folder name, in order to switch to
that folder.

The backup file can only be used to recover the same controller again. It is not for
updating other controllers.

Page 40/85

LiftApp Cyber Security Updating via SD/USB Mass Storage Fri, September 20, 2024

16.5 Updating via SD/USB Mass Storage

You will find the corresponding parameter by pressing first 'Home' and then the
hardware button 'Favorites' and then go
to 'System Menu' '→ System' '→ Software
Backup/Update'.

Keep in mind, that you are in need to enter
the SETUP code and have Inspection, Emerg-
ency Electrical Operation or Emergency Stop
activated in order to perform any update.

For performing an update via the mass storage (USB/SD) you want to choose 'Software
Update'. When you decide to perform an update via the mass storage, you will now be
asked to select the update file manually as shown in the dialogue.

The SHA of the update file is now calculated
and shown on the screen.

The technician has now the task to check
that shown HASH against the hash from
the release note, that he/she got via e-

Page 41/85

LiftApp Cyber Security Updating via SD/USB Mass Storage Fri, September 20, 2024

mail before. Only if that hash number is the very same, the software shall be installed
by means of pressing 'OK'.

If the SHA number match, press 'OK' otherwise press 'Cancel'.

After having rebooted the lift controller software, you can check that the software has
been updated by swiping once down the main screen and then using the green icon to
show the system information.

Any update of the software is recorded in the Parameter Change Log as well, that
cannot be erased by the technician.

Page 42/85

LiftApp Cyber Security Updating via the Cloud Service Fri, September 20, 2024

16.6 Updating via the Cloud Service

You will find the corresponding parameter by pressing first 'Home' and then the
hardware button 'Favorites' and then go to
'System Menu' '→ System' '→ Software
Backup/Update'.

Keep in mind, that you are in need to enter
the SETUP code and have Inspection, Emerg-
ency Electrical Operation or Emergency Stop
activated in order to perform any update.

For downloading an update file via the cloud service, you want to choose 'Check for the
latest software version'. If the connection with the cloud is successful, you will see the
current installed version and the version that can be downloaded as an update.

Page 43/85

LiftApp Cyber Security Updating via the Cloud Service Fri, September 20, 2024

The SHA of the update file is now calculated but not shown on the screen. Instead
the technician has now the task to enter the first eight digits of the HASH from
the release note, that he/she got via e-mail before.

In the case the hash does not match or has been entered wrong, the update process
can not be executed. Otherwise the update will be installed.

After having rebooted the software, you can, see that the software has been updated.

Page 44/85

LiftApp Cyber Security Updating via the Cloud Service Fri, September 20, 2024

Page 45/85

Figure 7: Float Chart Software Update/Backup

Check for an update
available for the installed system?

Notification via e-mail.

Consult the release notes for the new software version.
These include new features, improvements and

bugfixes. Security issues are highlighted.

Copy the update
file to USB/SD storage. Skip if you download

from the cloud.

Calculate the hash (SHA) over the provided file.

Does the hash of the
image and the file match?

Update process cancelled
Automatic creation of an internal backup of the

old firmware. Installation of the new firmware. Restart.

Activate Inspection,
Emergency Electrical Operation

or Emergency Stop
Do not trap passengers!

Open Update Assistant and fetch file
from USB/SD storage or cloud service.

No

Yes

Error

OK

No, user
cancelled

Yes

Ask/force lift technician to check
the hash, he/she got via e-mail

No

No

Failed

Yes, the calculated and the
given hash do match.

Final question
to install new

software?No Yes

Basic validation of the file, checking
the ELF, CRC32, vendor-id and product code

to match with the installed software.Validation
failed

Continue if the SHA-1 value of the
update file and the release email match.

Validation passed

Enter the Setup Code in order to open
the Software Backup/Update menu.

Done

Open Backup Assistant and save the
actual software to the mass storage.

LiftApp Cyber Security Password Security Fri, September 20, 2024

17 Password Security
We highly recommend, that the customers do setup a Setup Code and Service Code
to protect unattended usage of the lift controllers user interface.

The Setup and Service password shall be 6 digits, containing characters and numbers.

The setup password (red key) secures parameters such as contactor monitoring
times or the orientation of the position encoder used. The service password (yellow
key) secures settings such as parking times or settings for the onward journey
display.

While the Service Password might be the same within a maintenance company, we
recommend an installation-specific password for the Setup Password!

Passwords are generally not stored in the lift controller's storage. Instead a salted
SHA-1 (hash) of the password is stored. That means the lift controller can safely check
the password input for being legit but it is not possible to calculate back from the hash
to the readable (visible) password string.

Page 46/85

LiftApp Cyber Security Password Security Fri, September 20, 2024

If the user is inactive, the password must be entered again.

Some parameters and assistants
are 'Engineer on Site' and can not
be used remotely. Those are
marked in the menu printout.

Since version V1.24.18 (12-2023)

If the password has been entered
incorrectly three times in a row,
within three minutes, then the
password input will be blocked
for one minute. For each further
incorrect input, this blocking time
increases by another half minute.
If fifteen minutes have been
passed, since the last wrong
attempt, the internal counters are reset and three wrong password attempts are
granted again.

Since version V1.34.02 (09-2023)

After completing the setting trip,
the technician is asked to create
at least one SETUP password.

Page 47/85

LiftApp Cyber Security Lift Parameter Change Log Fri, September 20, 2024

18 Lift Parameter Change Log
In order to record any parameter changes done to the lift controller, changes are
recorded non-volatile in the unit. This log is not supposed to be erased by the end-
customer. It can only be erased by the manufacturer. The changed parameter, the old
parameter value, the new parameter value and the time of the change are saved.

The symbol of an entry signals whether the parameter was changed locally, by the bus
system, the cloud or an assistant (e.g. teach-in the braking distances).

Page 48/85

LiftApp Cyber Security Network connection Fri, September 20, 2024

19 Network connection

19.1 General

Our lift controller does not have cellular technology or any other wireless
communication on board.

The device can be connected to a router via the integrated wired network connector
(RJ-45), which in turn provides a network connection. If the connection is wireless, it is
mandatory to encrypt this temporary network with WPA2-PSK and to protect access
with a secure (8-digit) password. For security reasons, the controller features a
randomized MAC address by default. However, this can be changed if necessary when
integrating the unit into permanent networks (see below).

When connecting to a building management network (SCADA), as is the case in
hospitals for example, we recommend using a separate VLAN for connecting
technology such as lifts, air conditioning, lighting, etc. A so-called VLAN is a virtual local
area network, i.e. a logical sub-network of a physical local area network (LAN). The
Virtual Local Area Network forms its own network segment and broadcast domain.

We advise against connecting the lift controller to the same logical network as
printers, office PCs and similar equipment, as their physical access points (network
connections) are often easy to reach.

We also recommend using managed switches, where the MAC of the participant on a
network connection can be specified. For this purpose, the randomized MAC address
in the controller can be replaced by a fixed MAC address (which can be specified by
the end customer).

We do not recommend connecting the lift controller to a fixed WiFi® in a building,
even if it has been properly protected.

19.2 Fuzzing the Interfaces

The network interfaces are fuzzed using 'Naughty Strings' using the POSTMAN tool
before releasing a new firmware. These Fuzzing Tests include malformed HTTP
headers, HTTP bodies, and incorrect input and input featuring unexpected syntax, like
URLs, SQL commands and such. It is also being examined whether mass flooding of
the interfaces can have a negative impact on the performance of the lift application.

 See also ▶ Web server and Cloud Interface on page 21.

Page 49/85

LiftApp Cyber Security Open Network Ports Fri, September 20, 2024

19.3 Open Network Ports

By factory default no network port is open at all. But the customer might open a port
by means of activating a service, that is required for the project or end-customer
demands, like the web server. In order for us to check, if by default no network port is
open, we have created our own Port Scanner Tool, that has been build into our LiftApp
Toolbox.

Before a new software is released, that scanner is used to check, if the new firmware
release would have any port unintentionally open, for example when the software
developer would simply forgot to have turned off a debug port.

The tool delivers a protocol, that we archive, when releasing a firmware.

LiftApp Toolbox - Portscanner - 19.06.2024, 18:24:26

19-06-2024, 06:24PM

Try opening a socket to 192.168.178.10 at port 1.
Try opening a socket to 192.168.178.10 at port 2.
Try opening a socket to 192.168.178.10 at port 3.
…
Try opening a socket to 192.168.178.10 at port 65535.

Page 50/85

LiftApp Cyber Security USB/Micro-SD Security Fri, September 20, 2024

20 USB/Micro-SD Security
The unit is equipped with USB host connectors and a Micro-SD card, that supports
mass storage for File I/O. The USB and the SD-Card slot can be used to store text
printouts, like the fault history, the parameter change log, the parameter set, the
statistical printout or mass storage logging for fault tracking purposes. Newer devices
also support the temporary connection of USB network routers that use the USB-CDC
class.

The USB and SD-Card mass storage can also be used for updating the firmware. For
a detailed description of how to do a software backup or update, refer to chapter
LiftApp Update & Release Notification on page 37.

21 DEBUG Interface
The units have a TTL-3.3V-UART DEBUG interface, that is not populated on the PCB
by means of a connector or header. If someone would solder a connector on, reverse
engineer the pin-out and would use a special hardware adapter, the intruder would
get the boot log on that UART, that does not contain any relevant or secure data, no
serial numbers and such. If the LiftApp takes over, the interface is rendered
completely non-operational. To make this interface usable, a special development
version of the LiftApp has to be installed first by an engineer of the manufacturer.

Page 51/85

LiftApp Cyber Security Micro USB Connector Fri, September 20, 2024

22 Micro USB Connector
An USB micro connector is installed on some devices. This is not intended for
customer use, only available to the manufacturer for repair purposes. This connection
is protected with an 8-digit alphanumeric and random password. Only the
manufacturer has a table with the assignment between serial number and password.
Via this interface, it is possible for the manufacturer to reset the parameter change
record, if a device is sent in for repair and is not returned to the customer. There is no
such thing as a 'master key' and there never will be!

23 Safety Chain Sensing
The safety chain signals are monitored via our type-tested hardware-based sensing
circuit. We do not support software-based transmission of the states of the car doors,
shaft doors or door locks via the bus system. These signals have to be wired and are
processed by us directly on the controller board. The functions of these terminals
cannot be reprogrammed either locally or remotely – not even via the bus system.

The attempt to access these terminals via the bus system is not executed and is
answered with an abort code:

It is not possible to manipulate the signal states of the blocking device chain either
locally, via the bus system, or remotely.

We do not support the input functions of the safety chain signals defined in CANopen
because we have never supported the transmission of the safety chain signals via the
bus.

Page 52/85

LiftApp Cyber Security NeXt® Cloud Security Fri, September 20, 2024

24 NeXt® Cloud Security
To make sure, there is no unattended access to the lift via the cloud solution, that
could cause the lift being attacked or data stolen, Thor's cloud solution features TLS
encryption and a certificate based server authentication by default & by design
without any compromises.

The Transport Layer Security (TLS) is the successor of the older and meanwhile
deprecated Secure Sockets Layer (SSL). It is a cryptographic protocol, that have been
designed to provide communication security via a computer network. This protocol
has already been widely used in applications such as e-mail, online banking, instant
messaging.

This protocol layer includes encryption and a certificate based handshake, in order to
check if the cloud server is really the one, that the lift wants to connect to and not a
'fake' created via a DNS attack. The server certificate used contains the server name
and the trusted certificate authority (CA) that has issued the certificate of authenticity.
It also contains the server's public encryption key, that is used for encrypting the
payload data.

Accessing the screen remotely comes with limitations. Features and parameter that
clearly are not intended to be used remotely are labeled as 'Engineer on Site' and can
not be operated remotely. The protection of parameters (SETUP & SERVICE)
passwords are the same.

We highly recommend to protect the lift controller by means of a SETUP & SERVICE
password, when being connected to the Cloud solution. Under no circumstances
should these passwords be stored in the “notes” for the lift in the cloud itself.

Page 53/85

TCP/IP
(Filtering of malformed Packets)

Transport Layer Security (TLS)
(Encryption/Certificates)

Web Socket Protocol (RFC 6455)
(Sec-WebSocket-Key)

JSON REST API
Validation/

Detection of
malformed requests/

Inhibit Times
CANopen Object Dictionary

Min/Max/Plausibility

Credentials SERVICE/SETUP
Password Protection

Preventing an attacker from tricking
a WebSocket by use of crafted
XMLHttpRequests.

LiftApp Cyber Security MQTT Interface Security Fri, September 20, 2024

25 MQTT Interface Security
MQTT means “Message Queuing Telemetry Transport”. It is an open messaging protocol.
It is usually used for M2M solutions (machine-to-machine communication), such as in
the “Internet of Things”.

The lift controller software LiftApp provides a MQTT client, that had been developed
in-house with the focus on robustness and security. This interface must be explicitly
activated locally on the device. This is not possible remotely.

But beside writing robust code and making sure, that invalid MQTT message will not
corrupt or crash the system, it is vital that the MQTT Broker system on the customer
side is robust as well and properly protected against unattended access.

The customer must ensure that new security updates are installed in time and that
their MQTT system remains protected from unauthorized external access.

To make sure, that the connection and transportation of the MQTT message from and
to the broker/service is secure as well, we suggest to use the build-in TLS support.
That means that the MQTT message will be transported via a TLS-encrypted
WebSocket connection.

The secure socket is the preferred connection mode, when connecting via the
internet. If you run the system in a factory or hospital environment, were a secure and
encapsulated network is used for technical facilities, like lifts, you might go for the
simpler connection modes.

We regularly do fuzz test the MQTT interface by means of a testing method, that
creates thousands of malformed MQTT messages, that contain invalid message types,

Page 54/85

MQTT Client
(Plausibility Checks / No Parameter Access)

MQTT Broker/Server

TCP/IP
(Filtering of malformed Packets)

Transport Layer Security (TLS)
(Encryption/Certificates)

Web Socket Protocol (RFC 6455)
(Sec-WebSocket-Key)

Preventing an attacker from tricking
a WebSocket by use of crafted
XMLHttpRequests.

LiftApp Cyber Security MQTT Interface Security Fri, September 20, 2024

invalid remaining length indicators, invalid headers and payload data and even white
noise. These messages are then fired against the MQTT message parser, in order to
check, that all thinkable and non-expected error cases are properly handled, when
receiving and processing MQTT message from an external broker.

For information about the Fuzzing Testing that is done to the MQTT-Interface, please
have a look here Fuzz Testing the MQTT Interface of the LiftApp on page 22.

25.1 MQTT Settings and Connection Status

The MQTT support settings can be found by pressing the hardware button 'Favorites'
and then go further to 'System Menu' 'Network' 'More...' 'Even more...' 'Much→ → → →
more...' 'MQTT Support'.→
The connection status can be found on the last page of the MQTT settings. In this
example, an encrypted TLS WebSocket is used to connect to a Broker, featuring QoS
Level 1.

25.2 MQTT access to the Lift

Access to the lift controller via MQTT is restricted. It is only possible to make calls,
press the door open/close button and switch special fieldbus terminals via MQTT. The
interface is primarily intended for factory environments in which automated vehicles
use the lift. But MQTT is also steadily replacing older fieldbus systems in the area of
building automation in hospitals for example.

Page 55/85

Figure 8: MQTT Network Connection Status

LiftApp Cyber Security Testing a Release Candidate Fri, September 20, 2024

26 Testing a Release Candidate
Before a version is marked as stable and finally released to the OEM partners, it has to
pass several testing procedures. This includes the function test done by the author of
the software as well as a 'gray' test done by our service colleagues, that had not been
included in the development process.

26.1 Standard Test Procedure

• Checking the new release being able to be downgraded by the release before.
It would be a fatal issue, if a software being delivered, can't be updated anymore,
without the unit being send back to the factory.

• Testing the warm start and cold start feature.
Changing certain parameters require the unit for restart. In order to make that as
quick as possible, the software internally supports a quick warm start, were the
POSIX process is kept alive and runs to the destructor and constructor code again.

• Checking function to backup and restore the parameter set.
Backing up the parameter of the THOR unit and restoring them from a backup is a
quite vital feature. This test includes doing this via USB-stick but also checking if the
background task is still creating automatic backups on the pushed-in Micro-SD-card.

• Checking the function to reset to factory defaults and to reset the onboard
terminals.
If boards are replaced or swapped, resetting them to factory defaults or resetting
the on-board terminals is required. As this function is not used so often, a failure will
not be detected immediately. So testing it here is vital.

• Checking the functions used to printout the parameters, the logbook, the
parameter change log and the quantity list of faults.
This test shall be done in two languages, German and English to ensure we spot
issues with umlauts.

• Checking normal driving in position profile and velocity profile operation mode.
By doing this test, it makes sense to test also the Quickstart feature in both
operating modes, as internally that makes quite a difference.
Testing is done featuring ZA, Nidec and B&F drives and the iCON simulator, using
CANopen 417. Additionally we test DCP3/4+ via the Nidec with a different option

Page 56/85

LiftApp Cyber Security Standard Test Procedure Fri, September 20, 2024

module. We test as well 4-valve drive operation via IO simulation. Include in the test
also the 'Drive unit control enable signal', which we use for soft-starters to enable
the valves.

• Testing the inspection, emergency electrical operation and testing operating
both inspection panels at the same time. Checking that inspection takes
precedence over the emergency electrical operation.
When testing that pit and top inspection can drive in the same direction if the same
buttons have been pressed, ensure that this actually also applies to the 'Fast'
buttons, if the lift controller would have some.

• Testing the pit inspection reset operation, via a classical input, via the display
(Sweden) and via the alternative input method, using a pulse code.

• Checking re-levelling and SZ-fault detection as well as generating warnings for
the zone signal being dropped belated.

• Checking Emergency Stop functions, Out Of Order Operation, Maintenance
Mode and Assembly Operation Mode.

• Erasing all floors level position and operate the unit in Assembly Mode, via the
Emergency Electrical Operation.

• Doing a manual and automatic learning trip, using a simple encoder
(Wachendorff, ELGO 2M) and a safe encoder ELGO33CP and Safe ANTS.

• Using the UCM test assistant, the limit switch test assistant, the buffer test
assistant, Runtime test assistant, Safety circuit bridge test assistant.

• Testing the contactor monitoring and brake contact monitoring supervision
functions.

• Testing the power fail and car light power drop detection.

• Testing Phase Failure detection.

• Testing the non-volatile blocking for the passive safety chain.

• Testing the landing control off function and the car preference (independent
mode) functionality.

• Testing hydraulic homing, start supervision, runtime supervision and
deceleration supervision timer.

• Testing rotation supervision and car movement supervision.

• Testing the Cloud interface and the build web server.

Page 57/85

LiftApp Cyber Security Standard Test Procedure Fri, September 20, 2024

• Testing the safety chain bridge detection.

• Testing No-Load, Full-Load and Overload handling.

• Testing Energy Saving and Standby functions. That includes the timers for the
floor displays as well.

• Testing collective and SFR call operation modes.

• Testing Fire Alarm (simple, dynamic and fire alarm center mode).

• Testing Fire Recall/Service in the EN81 and US-ASME variants.

• Testing the Emergency Power functionality. This test includes checking the
signals, used for doing Emergency Power of several lifts in a sequence.

• Testing the Emergency Evacuation (Shutter Break) feature.

• Testing the low pit and head solution, including the car fence operation.

• Testing the custom temperature threshold inputs and also the detection of the
environment temperature, if exceeding the maximum allowed values as stated
in the normatives.

• Testing the IO terminals of the NX-T2/3, the M18 and the Nous boards.
This test includes starting them with inverted inputs and power-up.

• Testing the interlocked door operation.

• Testing the Extra Door Supervision.

• Testing the Separating Door Supervision.

• Testing of fully power driven automatic doors, swing doors with an automatic
car door, swing doors only, manual car door gates and safety light curtain
operation.

• Test advance door opening, including dropping the door zone, not receiving the
door zone and the door zone being stuck/hung. Check that the blocking
operation is non-volatile.

• Check the option to define the maximum door re-openings by a landing call.

• Check the swing door opener feature.

• Check the option to keep the retiring cam locked outside the floor level (not
door zone) for the Belgium market.

• Check the motion detector functionality.

• Check the detection of a permanently interrupted light curtain.

Page 58/85

LiftApp Cyber Security Standard Test Procedure Fri, September 20, 2024

• Check the door nudging operation and in detail if the door machine is featuring
reduced force, when closing.

• Check the finger protector handling, using the Meiller MiDrive for testing.

• Checking if the 'Limit switch «closed» bridge/hung detection' does work.

• Test erasing the logbook and resetting of statistical counters.

• Testing the QR code generator.

26.2 Extended Test List (New Functions)

• A detailed test of the new functions on the release list.

• A detailed test of the updated functions on the release list.

• A test of the new and/or updated functions by one college of the service stuff,
that takes the newly or updated chapter of the Software Reference Manual and
then simply without any further instructions tries to get the function running
properly. This might result in the dedicated chapter of the manual being
updated again, before the software has been updated.

• Fuzz Testing the network interface (Build-in webserver and JSON REST-API) my
means of using POSTMAN and our Test Collections, using an up-to-date 'List of
Naughty Strings' fired at the input fields and used to create malformed HTTP-
Headers, bodies and valid JSON-request but containing invalid or unexpected
data.

• Fuzz testing of the MQTT interface using a specially written test method, that
produces randomly incorrect MQTT messages (including incorrect length
identifiers).

Page 59/85

LiftApp Cyber Security White, Gray and Black Box Tests Fri, September 20, 2024

26.3 White, Gray and Black Box Tests

Before a new Software version of the LiftApp is released, the software passes the
standard test plan (see Standard Test Procedure on page 56 and the following), where the
Software Engineer and the Service Technician are testing the new implemented
functions, beside the existing functions.

While the software engineer is well
aware of how the functions shall work
(White Test), making sure that they
actually do what they are supposed to
do, the Service Technician will take the
dedicated Software Reference Manual
chapter and test the functions following
the documentation, performing a Black
Test or at least a Gray Test, if taking in
account that the new function might be
an extension of an existing function and
knowledge and experience from tests
before can be assumed or might be
even necessary.

Page 60/85

R – responsible
A - accountable
C – consulted
I – informed

La
rs

 G
u

st
af

ss
on

R
oy

 S
ch

ne
id

er

T
ho

m
as

 R
eu

l

Creating and maintaining
the Testing Document

White Tests of the
existing functions.

Verifying that the testing
documentation is complete.

I R I

-

A

R

R

R

C

Performing the
Black or Gray Test.

- I R

LiftApp Cyber Security Checksums & Software Version Fri, September 20, 2024

27 Checksums & Software Version
The lift controller provides an easy way to check, which version is running in the lift
controller and the checksum of the current running application.

You find that page here:

When the lift application is started, the integrity and checksum of the application are
recalculated and only started if they match. This prevents changes to the application
due to hardware failure. The file system used also uses checksums to detect defective
sectors and not to pass on data that is not valid.

Page 61/85

Figure 9: Checksums & Software Version

LiftApp Cyber Security Decommissioning Fri, September 20, 2024

28 Decommissioning
If the lift controller has been removed, for example, during a renovation, it should be
reset to factory settings before disposal. This will ensure that the lift number and
controller number are removed from the unit. Personal data is generally not stored on
the unit and therefore does not need to be erased. The unit should then be disposed
of properly and in accordance with local regulations.

If the device was equipped with a micro SD memory card during operation that is used
for data backup or voice announcement, this must be safely deleted (completely
formatted) after decommissioning and then disposed of in accordance with the
Electronic Waste Ordinance. The DIN standard 66399 regulates the secure destruction
of “office and data technology data carriers” by law. This should then be applied.

Page 62/85

LiftApp Cyber Security Coding rules Fri, September 20, 2024

29 Coding rules
Using common coding rules within the development team will ensure, that code can
be double checked, reviewed by colleagues, making it more likely that issues, bugs and
non caught error conditions can be found in the reviewing, debugging and testing life
cycle part of the software. These coding rules are always a matter of discussion and
are improved step by steps as the team is growing and getting more experienced.

29.1 Abstract

The following programming and coding rules are meant to be a resource for writing
good, reliable and readable code, making it easier for the team and programmers of
the project to review, extend, understand and learn from the existing code.

These rule shall also ensure, that the code is robust and less likely to be incorrect.
Good readable and easy to understand code is a good choice, if we want to make it
less likely to end up with bugs and issue, that are later encountered in the field by
customers. These rules are not meant to keep someone in leading-strings. They will
help the team to avoid bugs and help each other to read the code of the colleges.

Easily readable and easy-to-understand code is a good prerequisite for avoiding
Cybersecurity vulnerabilities from the beginning.

29.2 Basic and General Directives

• Never access data structures shared over threads directly without the proper
mutual exclusion (locked by a Semaphore, Mutex or Critical Sections). Remember
that other threads may be accessing the same structures in the very same
moment.

• Prefer event notification over polling methods.

• Provide a useful error response (to the log) if a resource is not available, when
the application needs it.

• Never tie up system or application resources, unless it is absolutely necessary.

• Always make use of the simple structure conventions!

Page 63/85

LiftApp Cyber Security Basic and General Directives Fri, September 20, 2024

◦ All reserved or currently unused fields/elements should be initialized to
zero for future compatibility.

◦ Fields/elements that are not defined to have a particular initial value
must be initialized to zero. This shall include pointer fields.

◦ Always keep in mind the alignment of the fields/elements. Modern
processors expect that types like WORD or DWORD will be stored in memory
at addresses that are multiples of their own length. Some processors may
allow unaligned access but payed with a performance penalty.

• Do not use signed variables or signed math for addresses.

• Avoid deep nesting of code if possible. It will make it more readable for others
and that means that the code can easier be understood and verified for errors.

• Do not repeat code all over again. Create a function or method instead. If
performance is a crucial factor, make this function or method 'inline' to avoid
unnecessary overhead by jumping into and returning from that sub-function or
method.

• Avoid packing code into macros. It might be sometimes required but use this
method with care as it makes code harder to review.

• If local variables do contain constant values, declare them as 'const' making it
impossible to alter the values by mistake or use them as 'temporary' variables
for computing that had been added on later in the software's life cycle.

• Never use CPU delay loops. Instead use the timer functions 'addclock/diffclock'
or the 'Board_Sleep' function. Under Linux® the use of 'nanosleep()' shall be
preferred over the older 'msleep() and usleep()' functions as those functions
may not have been tied to the MONOTONIC clock, creating issues when setting
the system time.

Page 64/85

LiftApp Cyber Security Rules and Definitions Fri, September 20, 2024

29.3 Rules and Definitions

Functions/Methods and Attributes

The function/method comment block will feature the “DoxyGen” like reserved key
words.

• A function having no parameters will defined explicit as “void” in the
declaration/definition.

• The way the brackets are set will not be strictly defined, but for better
readability a project should use just one bracket schematics.

• Always use brackets around return statements and in 'if' clauses.

if ((a == 3) && (b == 5))
{
 ...
}
return(a + b);

Page 65/85

/**
 * Returns if the lift is currently in priority call operation mode.
 *
 * @return TRUE/FALSE
 */

int CliftPilot::Is_Prio_Call_Operation(void) const
{
 return(m_priority_call_state ? TRUE : FALSE);
}

Method having no parameters (Definition)

public:

 /* Returns if the lift is currently in prio call operation mode. */

 int Is_Prio_Call_Operation(void) const;

Method having no parameters (Declaration)

LiftApp Cyber Security Rules and Definitions Fri, September 20, 2024

• Limit Variable Scope within functions and methods. If possible make variables
constant to make sure they are not changed by code later added by someone
else.

• Enumeration/Type definitions will have the word “Enum” or “Type” at the end of
their names.

• Attributes have a “m_” in the beginning of their names.

• Global variables are rarely used and will have a “g_” in the beginning of their
names.

• All class names start with a capital “C” or “Q” for Qt® classes.

• Function providing a “Getter” functionality should start with “Get”, “Is” or “Are”.

• Function that provide a “Setter” functionality should start with “Set”.

• Handler (cyclic/event triggered) should start with “Handle” or “Do”.

Page 66/85

LiftApp Cyber Security Rules and Definitions Fri, September 20, 2024

Deriving classes

• If deriving classes, polymorphism should be avoided.

• The derived class name may contain the name of its super class.

• If the super class is the base class itself, the word “Base” should be removed
from the derived class name.

Page 67/85

/**
 * Door class for a typical automatic car/landing door combination.
 */

class CLiftDoorCntrlAuto : public CLiftDoorCntrlBase
{

};

Deriving classes (Declaration)

/**
 * Door class for a automatic car door and manual (swing) landing door combination.
 */

class CLiftDoorCntrlAutoSwing : public CLiftDoorCntrlAuto
{

};

Deriving classes (Declaration)

LiftApp Cyber Security Rules and Definitions Fri, September 20, 2024

Jumps

• Absolute jumps like “goto xyz” should be banned. :-)

• Using “continue;” should be used with care. A common mistake is to increment a
pointer in the end of a loop and bypassing this incremental instruction by
mistake, because some branch is using a Continue in a switch/case construct.

Type definitions including enumerations and bit fields

Keep in mind that the internal organization of bit fields are big/little endian depended.

Page 68/85

/**
 * Structure for storing pending call acknowledge (lamps) cancellation.
 */

typedef struct CallAckCancellationType
{
 uint8_t floor; // Floor of call

 struct
 {
 uint8_t call_type : 4; // Call type
 uint8_t door_mask : 4; // Door bit mask

 } info;

 uint8_t count; // Timer triggered counter

} CallAckCancellationType;

Structure declaration

/**
 * Lift attendant (lift boy)
 */

typedef enum LiftBoyOperationStateType
{
 LIFT_BOY_OPERATION_STATE_OFF = 0, // Operating mode is off.
 LIFT_BOY_OPERATION_STATE_ON = 1, // Operating mode is on.
 LIFT_BOY_OPERATION_STATE_START = 2, // On, waiting for the start button.
 LIFT_BOY_OPERATION_STATE_RUN = 3, // On, driving to next floor.
 LIFT_BOY_OPERATION_STATE_ERROR = 4, // On, error mode.

} LiftBoyOperationStateType;

Declaration of types and enumerations

LiftApp Cyber Security Rules and Definitions Fri, September 20, 2024

Switch/Case/Default constructions

A switch/case should always have a default path even if it is empty or just contains a
debug message, like this:

So called 'Fall thru' constructs within a switch-case are undesirable as they are prune
to lead to errors and mistakes.

Long if/else constructs

To make long if/else constructs better readable, sometimes it is a good idea to add
even the empty else paths. This also applies to indicate that the 'else' path had not
been forgotten.

Page 69/85

 /* Filter door signals. */

 switch (sigid)
 {
 case APP_LIFT_DOOR_INPUT_CLOSED:

 /* Route floor/door selective door limits input signals. */

 if ((floor == APP_LIFT_FLOOR_ALL) || (!floor))
 {
 <snip>
 }
 break;

 <snip>

 default:
 GURU0(("Door %d: Unknown signal %d passed. ", m_door_id, sigid));
 break;
 }

Switch/Case/Default

 /* Door lock rule on Safety light curtains. */

 if (data->idoor_count)
 {

 /* Some (very) long code... */

 }
 else
 {
 GURU0(("CUnitBase: Should never be executed."));
 }

<snip>

If/else

LiftApp Cyber Security Rules and Definitions Fri, September 20, 2024

Source and Header files

To make the understanding for the purpose of classes and files obvious and easy to
follow, each source and header file shall contain an initial comment block, giving basic
information about function, purpose, language, toolchain, original file name, project
name and the author(s). The additional date is redundant as the repository system
(GIT) is keeping track of it. Nevertheless, in practice it has turned out to makes sense
to update the date manually.

Page 70/85

/**
 * Copyright © 2016 Thor Engineering GmbH
 *
 * liftpilot.cpp
 *
 * Implementation of the basic states, the lift passes through while
 * processing calls - or better destinations, which are defined by
 * one or more calls. Each destination is a 3-tuple of a floor, a
 * door-mask (containing one or more doors attached) and a call type.
 * By reaching a destination one or more of these 3-tuples will be
 * canceled. The main goal of the "LiftPilot" class is to finish
 * all destinations in the shortest time possible.
 *
 * Project: LiftApp for the NeXt project
 *
 * Programmer: Roy Schneider
 * Last Change: 18.05.2016
 *
 * Language: C/C++
 * Toolchain: GCC/GNU-Make
 */

#include "../main.h"

#include "liftdata.h"
#include "liftparam.h"
#include "liftapp.h"
#include "liftpilot.h"

#include "../../logfile/logfile.h"

<snip>

Source/Header initial comment block

LiftApp Cyber Security Rules and Definitions Fri, September 20, 2024

Classic C-String operations

• When possible and useful prefer a string class over classic string operations.

• Usage of deprecated string functions, like strcpy, strcat, strlen or sprintf shall be
avoided. Instead the variants, like snprintf or strncpy, strncat, strnlen shall be
used, that provide a parameter for limiting the destination buffer length.

• Double check, that the given 'max' value is matching the destination string
remaining buffer size.

• Always use the _countof() instead of the sizeof() macro when determining string
buffer sizes, to make sure, that the buffer size is correctly calculated,
even when dealing with wchar_t (multi bytes characters) instead of simple char.

• Make sure that the string buffers are always zero terminated. When using
strncpy keep in mind, that it will not terminate the destination buffer with a
zero, when having reached the maximum character count. This is a different
behaviour from snprintf for example.

• When appending strings to strings, check the remaining buffer space.

Page 71/85

char sztemp[32];

/* Always make sure that the destination string will be zero terminated
 * and that the destination buffer does not overflow.
 * Keep in mind, that strncpy will not terminate the string with a zero
 * when reaching the maximum character count given! */

if (pstr)
{
 strncpy(sztemp, pstr, _countof(sztemp) – 1);
 sztemp[_countof(sztemp) – 1] = 0;
}

/* Always make sure that the destination string will be zero terminated
 * and that the destination buffer does not overflow. */

static const char s_fmtin[] = ”Debug: %d”;

snprintf(sztemp, _countof(sztemp), s_fmtin, ival);

/* When appending strings to strings, check the remaining buffer space. */

size_t slen = strnlen(sztemp, _countof(sztemp) – 1);

strncat(sztemp, ”TEST”, _countof(sztemp) – 1 – slen);
sztemp[_countof(sztemp) – 1] = 0;

String operations

LiftApp Cyber Security Code Analysis Tools Fri, September 20, 2024

30 Code Analysis Tools
To ease our work, of finding potential and real bugs and issues of several types, we
make use of static analysis tools, that are available in the market which helps to
analyze the code during the development and detect fatal defects early in the
development phase.

Such defects can be eliminated before the code is actually pushed for functional. A
defect found later is always expensive to fix.

We are using...

• CDT Code Analysis, that is running in the background while the developer is
typing and writing. This tools detects for example non-initialized variables right
while typing the code.

• GNU Code Diagnostic that detects a hole bunch of issues right while compiling,
such as mismatches between variable data types and format specifiers in C-
format strings.

• CPPCheck Static Source Code Analysis Tool is an open source analysis tool for C
and C++ code. It provides unique code analysis to detect bugs and focuses on
detecting undefined behaviour and dangerous coding constructs. The goal is to
detect only real errors in the code, and generate as few false warnings as
possible.

• DoxyGen is not really a Code diagnostic tool but while checking the
documentation tags it also discovers mismatches, like variable naming
discrepancies in declarations and definitions. It also throws additionally
warnings about unclear method overloading.

Page 72/85

LiftApp Cyber Security Risky Compiler Optimizations Fri, September 20, 2024

31 Risky Compiler Optimizations
A very good example for risky compiler optimizations, that can cause security issues
was CVE-2009-1897 as documented by RedHat. Here the compiler would have
removed a Null pointer check as the variable by mistake was in the code dereferenced
before, so the compiler's logic would remove the null check. The code analysis tool
CPPCheck will actually scan the code for problems like this:

The LiftApp and the Linux kernel uses GCC’s -fno-delete-null-pointer-checks to
disable such optimization.

Applications often need to read sensitive data, such as password input or key data.
The memory used for this sensitive data (stack or heap) must be properly cleaned up
by overwriting its contents before the function returns to the caller. Compiler
optimizations remove variable writes if those variables are not used later in the
function. This results in sensitive information remaining in memory after it has been
used. This can be prevented by calling a function to clear the memory so that from the
compiler's perspective, the variable is considered to be in use. Additionally, 'volatile'
can be used to prevent such compiler optimization.

Page 73/85

/* Here the compiler would have removed a Null pointer check as the variable
 * by mistake was in the code dereferenced before. */

mystruct_t * pstr = Get_Pointer();
const int32_t ival = pstr->value;

if (!pstr)
{
 GURU0((“GURU MEDITATION 00000003”))
}

Risky Compiler Optimizations

/* To make sure code that is used to scrubb sensitive data from memory is
 * not optimized out, make sure calling a dedicated method for scrubbing. */

volatile char szpwddata[64];

Get_Pwd_Data(&szpwddata, sizeof(szpwddata));

… … Use the data… … and scrubb them by means of calling a dedicated function.

Scrub_Sensitive_Data(&szpwddata, sizeof(szpwddata));

Risky Compiler Optimizations

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

32 SHA implementation
The following codes reflects the implementation of the Secure Hash Algorithm as
being used in the lift controller application.
/**
 * Copyright (c) 2017-19 Thor Engineering GmbH
 *
 * sha.cpp The "Secure Hash Algorithm" SHA1 implementation.
 *
 * Project: LiftApp for the NeXt project
 *
 * Programmer: Roy Schneider
 * Last Change: 19.08.2019
 *
 * Language: C/C++
 * Toolchain: GCC/GNU-Make
 *
 * NOTE:
 * This implementation in C++ was inspired by the published work of
 * John Halleck (University of Utah).
 */

#include "../main.h"
#include "../base/base_types.h"
#include "bitutils.h"
#include "sha1.h"

/**
 * Constructor
 */

CSHA1Provider::CSHA1Provider()
{
 memset(&m_context, 0, sizeof(m_context));
}

/**
 * Destructor
 */

CSHA1Provider::~CSHA1Provider()
{
}

/**
 * Initialize the SHA provider instance.
 *
 * @return OK/ERROR
 */

int CSHA1Provider::Init (void)
{
 /* Init */

 memset(&m_context, 0, sizeof(m_context));

Page 74/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

 register unsigned long *_pd = m_context.cprocess;

 *_pd++ = 0x67452301;
 *_pd++ = 0xEFCDAB89;
 *_pd++ = 0x98BADCFE;
 *_pd++ = 0x10325476;
 *_pd = 0xC3D2E1F0;

 /* Return */

 return(OK);
}

/**
 * Execute the SHA rounds and transform the data.
 */

inline void CSHA1Provider::Transform (void)
{
 int ival;
 CryptSHA1ContextType *pc;
 unsigned long dwval, *pdw;
 unsigned long dwA, dwB, dwC, dwD, dwE;
 unsigned long dw[128];

 /* Init */

 pc = &m_context;

 /* Check */

 /* Init */

 register unsigned long *_ps = pc->cprocess;

 dwA = *_ps++;
 dwB = *_ps++;
 dwC = *_ps++;
 dwD = *_ps++;
 dwE = *_ps;

 ival = APP_SHA_1_BLOCKWORDSIZE;
 pdw = dw;

 register unsigned long *_pd = pc->ldata;

 while(likely(ival--))
 {
 *pdw++ = *_pd;
 *_pd++ = 0;
 }

 ival = 16;

 while(likely(ival < 80))
 {
 _pd = dw + ival;

 *_pd = *(_pd - 3) ^ *(_pd - 8) ^ *(_pd - 14) ^ *(_pd - 16);

Page 75/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

 *_pd = ROTINT32(1, *_pd);

 ival++;
 }

 ival = 0;
 _pd = dw;

 while(likely(ival < 20))
 {
 dwval = (*_pd++) + ROTINT32(5, dwA) + dwE + 0x5A827999L + \
 ((dwB & dwC) | (~dwB & dwD));

 dwE = dwD;
 dwD = dwC;
 dwC = ROTINT32(30, dwB);
 dwB = dwA;
 dwA = dwval;

 ival++;
 }

 while(likely(ival < 40))
 {
 dwval = (*_pd++) + ROTINT32(5, dwA) + dwE + 0x6ED9EBA1L + \
 (dwB ^ dwC ^ dwD);

 dwE = dwD;
 dwD = dwC;
 dwC = ROTINT32(30, dwB);
 dwB = dwA;
 dwA = dwval;

 ival++;
 }

 while(likely(ival < 60))
 {
 dwval = (*_pd++) + ROTINT32(5, dwA) + dwE + \
 0x8F1BBCDCL + ((dwB & dwC) | (dwB & dwD) | (dwC & dwD));

 dwE = dwD;
 dwD = dwC;
 dwC = ROTINT32(30, dwB);
 dwB = dwA;
 dwA = dwval;

 ival++;
 }

 while(likely(ival < 80))
 {
 dwval = (*_pd++) + ROTINT32(5, dwA) + dwE + 0xCA62C1D6L + \
 (dwB ^ dwC ^ dwD);

 dwE = dwD;
 dwD = dwC;
 dwC = ROTINT32(30, dwB);
 dwB = dwA;

Page 76/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

 dwA = dwval;

 ival++;
 }

 _pd = pc->cprocess;
 register unsigned long lmsk = 0xFFFFFFFF;

 *_pd += dwA;
 *_pd++ &= lmsk;
 *_pd += dwB;
 *_pd++ &= lmsk;
 *_pd += dwC;
 *_pd++ &= lmsk;
 *_pd += dwD;
 *_pd++ &= lmsk;
 *_pd += dwE;
 *_pd &= lmsk;

 pc->iword = 0;
 pc->ibyte = 0;
}

/**
 * Update the SHA context with the given string.
 *
 * @param pbuf Pointer to the data buffer used to update the hash.
 * @param icnt Length (or count of) bytes in the buffer given by 'pbuf'.
 *
 * @return OK/ERROR
 */

int CSHA1Provider::Update(const unsigned char *pbuf, int icnt)
{
 int ierr;
 int iword;
 CryptSHA1ContextType *pc;
 unsigned long dwval, dwmask;

 /* Init */

 pc = &m_context;

 /* Check */

 if (likely((pc) && (pbuf) && (icnt > 0)))
 {
 /* Init */

 dwmask = 0x1FFFFFFF; // 29 bit mask

 pc->lcount_hi += icnt >> 29;
 pc->lcount_low += icnt & dwmask;
 pc->lcount_hi += pc->lcount_low >> 29;
 pc->lcount_low &= dwmask;

 iword = pc->iword;
 dwval = pc->ldata[iword];

Page 77/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

 while(likely(icnt--))
 {
 dwval = (*pbuf++) | (dwval << 8);

 pc->ibyte++;

 if (unlikely(pc->ibyte >= 4 /*32 bit*/))
 {
 pc->ldata[iword++] = dwval;

 dwval = 0;

 if (unlikely(iword >= APP_SHA_1_BLOCKWORDSIZE))
 {
 Transform();

 iword = 0;
 }

 pc->ibyte = 0;
 }
 }

 pc->iword = iword;
 pc->ldata[iword] = dwval;

 ierr = OK;
 }
 else
 {
 ierr = ERROR;
 }

 /* Return */

 return(ierr);
}

/**
 * Pad (fill up) the SHA buffer.
 */

void CSHA1Provider::Pad(void)
{
 CryptSHA1ContextType *pc;
 int ival;

 /* Init */

 pc = &m_context;

 /* Init */

 unsigned long *_pd = pc->ldata + pc->iword;

 *_pd <<= 8;
 *_pd |= BIT7;

 switch(pc->ibyte)

Page 78/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

 {
 case 2:
 *_pd <<= 8;
 break;
 case 1:
 *_pd <<= 16;
 break;
 case 0:
 *_pd <<= 24;
 break;
 default:
 break;
 }

 ival = pc->iword + 1;
 _pd = pc->ldata + ival;

 while(likely(ival < APP_SHA_1_BLOCKWORDSIZE))
 {
 *_pd++ = 0;

 ival++;
 }

 pc->iword = 0;
 pc->ibyte = 0;
}

/**
 * Return the SHA bytes in the given buffer.
 *
 * @param phash Hash result buffer. See CryptSHA1Digest8Type for details.
 *
 * @return OK/ERROR
 */

int CSHA1Provider::GetBytes(CryptSHA1Digest8Type phash)
{
 CryptSHA1ContextType *pc;
 int ival;
 int ierr;
 unsigned long cval;

 /* Init */

 pc = &m_context;

 /* Check */

 if (likely((pc) && (phash)))
 {
 /* Init */

 ival = 0;

 unsigned char *ph = phash;

 while(likely(ival < APP_SHA_1_DIGESTWORDSIZE))
 {

Page 79/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

 cval = pc->cprocess[ival];

 *ph++ = (unsigned char) LOINT8((cval >> 24));
 *ph++ = (unsigned char) LOINT8((cval >> 16));
 *ph++ = (unsigned char) LOINT8((cval >> 8));
 *ph++ = (unsigned char) LOINT8((cval));

 ival++;
 }

 ierr = OK;
 }
 else
 {
 ierr = ERROR;
 }

 /* Return */

 return(ierr);
}

/**
 * Finalize the SHA hash.
 *
 * @param phash Hash result buffer. See CryptSHA1Digest8Type for details.
 *
 * @return OK/ERROR
 */

int CSHA1Provider::Final(CryptSHA1Digest8Type phash)
{
 CryptSHA1ContextType *pc;
 int ival;
 int n;
 int ierr;

 /* Init */

 pc = &m_context;

 /* Check */

 if (likely((pc) && (phash)))
 {
 /* Init */

 ival = (pc->iword << 2) + pc->ibyte + 1;

 Pad();

 if (unlikely(ival > APP_SHA_1_PADDING_REMAINDER))
 {
 Transform();

 unsigned long * _pl = pc->ldata;

 n = (APP_SHA_1_BLOCKWORDSIZE - APP_SHA_1_PADDING_WORDS);

Page 80/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

 while(likely(n--))
 {
 *_pl++ = 0;
 }

 pc->iword = APP_SHA_1_BLOCKWORDSIZE;
 pc->ibyte = 0;
 }

 unsigned long * _pl = &pc->ldata[14];

 *_pl++ = pc->lcount_hi;
 *_pl = pc->lcount_low << 3;

 Transform();

 ierr = GetBytes(phash);
 }
 else
 {
 ierr = ERROR;
 }

 return(ierr);
}

/**
 * Create a SHA hash from the given string.
 *
 * @param phash Hash result buffer. See CryptSHA1Digest8Type for details.
 * @param pbuf Pointer to the buffer containing the string to hash.
 * @param icnt Count of characters in the buffer containing the string
 * to hash.
 *
 * @return OK/ERROR
 */

int CSHA1Provider::HashIt(CryptSHA1Digest8Type *phash, \
 const unsigned char *pbuf, int icnt)
{
 int ierr;

 /* Init */

 memset(&m_context, 0, sizeof(m_context));
 memset(phash, 0, sizeof(CryptSHA1Digest8Type));

 /* Check */

 ierr = ERROR;

 if (likely((pbuf) && (phash) && (icnt > 0)))
 {
 if (likely(Init() == OK))
 {
 if (likely(Update(pbuf, icnt) == OK))
 {
 ierr = Final(*phash);
 }

Page 81/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

 }
 }

 return(ierr);
}

/**
 * Verify (compare) two SHA1 hashs.
 *
 * @param pplain1 [in] First plain SHA hash.
 * @param pplain2 [in] Second plain SHA hash used to verify (compare) the first.
 *
 * @return OK/ERROR
 */

int CSHA1Provider::VerifyIt(CryptSHA1Digest8Type pplain1, \
 CryptSHA1Digest8Type pplain2)
{
 int ierr;

 /* Init */

 ierr = ERROR;

 if (likely((pplain1) && (pplain2)))
 {
 if (likely(!memcmp(pplain1, pplain2, sizeof(CryptSHA1Digest8Type))))
 {
 ierr = OK;
 }
 }

 return(ierr);
}

/**
 * Calculate SHA1 of the given file stream and finally return it to the caller.
 *
 * <Beware that this code is optimized for 32/64 bit memory
 * block alignment for little endian processors.>
 *
 * @param pfile Pointer to the file, returned by fopen().
 * @param phash Hash result buffer. See CryptSHA1Digest8Type for details.
 *
 * @return OK/ERROR
 */

int CSHA1Provider::CalculateSHAFile(FILE *pfile, CryptSHA1Digest8Type *phash)
{
 int ierr;
 size_t ilen;
 unsigned char *ptmp;

 /* Init */

 ierr = ERROR;

 memset(&m_context, 0, sizeof(m_context));

Page 82/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

 if (likely(phash))
 {
 memset(phash, 0, sizeof(CryptSHA1Digest8Type));

 /* Check */

 if (likely(pfile))
 {
 /* Alloc */

 ilen = 16 * 1024;
 ptmp = new unsigned char[ilen];

 if (likely(ptmp))
 {
 if (likely(Init() == OK))
 {
 if (likely(!fseek(pfile, 0, SEEK_SET)))
 {
 unsigned long ulread = 0;

 do
 {
 ulread = fread(ptmp, 1 /*byte*/, ilen, pfile);

 if (likely(ulread))
 {
 ierr = Update(ptmp, (int) ulread);

 if (unlikely(ierr != OK))
 {
 ierr = ERROR;
 break;
 }
 }
 }
 while(likely(ulread));

 /* Finalize */

 if (likely(ierr != ERROR))
 {
 ierr = Final(*phash);
 }
 }
 }

 /* Free memory */

 delete(ptmp);

 } // if (likely(ptmp))
 }
 }

 /* Return */

 return(ierr);
}

Page 83/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

/**
 * Calculate the SHA of the given file name and finally return it to the caller.
 *
 * <Beware that this code is optimized for 32/64 bit memory
 * block alignment for little endian processors.>
 *
 * @param pfilename Pointer to the file, returned by fopen().
 * @param phash Hash result buffer. See CryptSHA1Digest8Type for details.
 *
 * @return OK/ERROR
 */

int CSHA1Provider::CalculateSHAFile(const char *pfilename, \
 CryptSHA1Digest8Type *phash)
{
 int ierr;

 /* Init */

 ierr = ERROR;

 /* The file exists, open it as a binary. */

 if (likely(pfilename))
 {
 if (likely(*pfilename))
 {
 FILE *pfile = fopen (pfilename, "rb");

 if (likely(pfile))
 {
 ierr = CalculateSHAFile(pfile, phash);

 fclose(pfile);
 }
 }
 }

 return(ierr);
}

/* sha1.cpp */

Page 84/85

LiftApp Cyber Security SHA implementation Fri, September 20, 2024

List of figures
Figure 1: Menu item requiring setup password privilege..13
Figure 2: Lift Parameter Change Log found under System Menu Security→14
Figure 3: Jira Workflow - KAN Board...29
Figure 4: Jira Workflow - Gantt Diagram..29
Figure 5: Incident Report Flow Chart...32
Figure 6: Revision control system...35
Figure 7: Float Chart Software Update/Backup..45
Figure 8: MQTT Network Connection Status...55
Figure 9: Checksums & Software Version..61

Page 85/85

	1 Normative references
	2 Company
	3 Copyright
	4 Error Reports
	5 Abstract
	6 Signs & Symbols
	7 Purpose and Intended Use
	8 Safety Information
	9 General
	9.1 Introduction
	9.2 Threat model
	9.3 Disambiguation
	9.4 Data minimization
	9.5 Code Analysis and Automatic Documentation

	10 Product requirements
	10.1 FR1 (SL-T2)
	10.2 FR2 (SL-T2)
	10.3 FR 3 (SL-T2)
	Application
	Safety Chain Sensing

	10.4 FR 4 (SL-T2)
	Application
	Safety Chain Sensing

	10.5 FR 5 (SL-T1)
	10.6 FR 6 (SL-T1)
	10.7 FR 7 (SL-T2)
	Energy/System Power
	Safety Chain and Safety Circuit
	CANBus
	Web server and Cloud Interface
	MQTT-Interface
	Fuzz-Testing the Cloud JSON-REST-API and Web Interface
	Fuzz Testing the MQTT Interface of the LiftApp
	Port Scanning

	11 Development Environment
	11.1 Local Development Machines
	11.2 Data Protection on Routers, Switches and other Network Equipment
	11.3 Data Protection on involved NAS Systems
	11.4 Data Protection when generating Software Releases
	11.5 Data Protection regarding E-Mail and external File-Storage
	11.6 Data Protection inside Thor's Lift Cloud Interface
	11.7 Google's and DeepL's Cloud API solutions
	11.8 Staying Up-To-Date about Vulnerabilities
	11.9 Workflow

	12 Incident/Issue Reporting
	13 Updating & Maintaining the Manuals
	14 Versioning
	14.1 Example
	14.2 Numbering
	14.3 Tagging

	15 Documenting the Software Testing/Fuzzing
	16 LiftApp Update & Release Notification
	16.1 Update Documentation
	16.2 Update & Functional Security
	16.3 Safely Updating the Firmware
	16.4 Creating a backup copy of the current software
	16.5 Updating via SD/USB Mass Storage
	16.6 Updating via the Cloud Service

	17 Password Security
	18 Lift Parameter Change Log
	19 Network connection
	19.1 General
	19.2 Fuzzing the Interfaces
	19.3 Open Network Ports

	20 USB/Micro-SD Security
	21 DEBUG Interface
	22 Micro USB Connector
	23 Safety Chain Sensing
	24 NeXt® Cloud Security
	25 MQTT Interface Security
	25.1 MQTT Settings and Connection Status
	25.2 MQTT access to the Lift

	26 Testing a Release Candidate
	26.1 Standard Test Procedure
	26.2 Extended Test List (New Functions)
	26.3 White, Gray and Black Box Tests

	27 Checksums & Software Version
	28 Decommissioning
	29 Coding rules
	29.1 Abstract
	29.2 Basic and General Directives
	29.3 Rules and Definitions
	Functions/Methods and Attributes
	Deriving classes
	Jumps
	Type definitions including enumerations and bit fields
	Switch/Case/Default constructions
	Long if/else constructs
	Source and Header files
	Classic C-String operations

	30 Code Analysis Tools
	31 Risky Compiler Optimizations
	32 SHA implementation

